Stochastic modeling and global warming trend extraction for ocean acoustic travel times

1995 ◽  
Vol 97 (5) ◽  
pp. 3234-3234
Author(s):  
Steven Bottone ◽  
Henry L. Gray ◽  
Wayne A. Woodward
1993 ◽  
Vol 69 (3) ◽  
pp. 290-293 ◽  
Author(s):  
Brian J. Stocks

The looming possibility of global warming raises legitimate concerns for the future of the forest resource in Canada. While evidence of a global warming trend is not conclusive at this time, governments would be wise to anticipate, and begin planning for, such an eventuality. The forest fire business is likely to be affected both early and dramatically by any trend toward warmer and drier conditions in Canada, and fire managers should be aware that the future will likely require new and innovative thinking in forest fire management. This paper summarizes research activities currently underway to assess the impact of global warming on forest fires, and speculates on future fire management problems and strategies.


Eos ◽  
1976 ◽  
Vol 57 (9) ◽  
pp. 631
Author(s):  
Anonymous
Keyword(s):  

2021 ◽  
pp. 1-40

Abstract There are heated debates on the existence of the global warming slowdown during the early 21st century. Although efforts have been made to clarify or reconcile the controversy over the issue, it is not explicitly addressed, restricting the understanding of global temperature change particularly under the background of increasing greenhouse-gas concentrations. Here, using extensive temperature datasets, we comprehensively reexamine the existence of the slowdown under all existing definitions during all decadal-scale periods spanning 1990-2017. Results show that the short-term linear-trend dependent definitions of slowdown make its identification severely suffer from the period selection bias, which largely explains the controversy over its existence. Also, the controversy is further aggravated by the significant impacts of the differences between various datasets on the recent temperature trend and the different baselines for measuring slowdown prescribed by various definitions. However, when the focus is shifted from specific periods to the probability of slowdown events, we find the probability is significantly higher in the 2000s than in the 1990s, regardless of which definition and dataset are adopted. This supports a slowdown during the early 21st century relative to the warming surge in the late 20th century, despite higher greenhouse-gas concentrations. Furthermore, we demonstrate that this decadal-scale slowdown is not incompatible with the centennial-scale anthropogenic warming trend, which has been accelerating since 1850 and never pauses or slows. This work partly reconciles the controversy over the existence of the warming slowdown and the discrepancy between the slowdown and anthropogenic warming.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2658
Author(s):  
Nixon Bahamon ◽  
Jacopo Aguzzi ◽  
Miguel Ángel Ahumada-Sempoal ◽  
Raffaele Bernardello ◽  
Charlotte Reuschel ◽  
...  

Since 2014, the global land and sea surface temperature has scaled 0.23 °C above the decadal average (2009–2018). Reports indicate that Mediterranean Sea temperatures have been rising at faster rates than in the global ocean. Oceanographic time series of physical and biogeochemical data collected from an onboard and a multisensor mooring array in the northwestern Mediterranean Sea (Blanes submarine canyon, Balearic Sea) during 2009–2018 revealed an abrupt temperature rising since 2014, in line with regional and global warming. Since 2014, the oligotrophic conditions of the water column have intensified, with temperature increasing 0.61 °C on the surface and 0.47 °C in the whole water column in continental shelf waters. Water transparency has increased due to a decrease in turbidity anomaly of −0.1 FTU. Since 2013, inshore chlorophyll a concentration remained below the average (−0.15 mg·l−1) and silicates showed a declining trend. The mixed layer depth showed deepening in winter and remained steady in summer. The net surface heat fluxes did not show any trend linked to the local warming, probably due to the influence of incoming offshore waters produced by the interaction between the Northern Current and the submarine canyon. Present regional and global water heating pattern is increasing the stress of highly diverse coastal ecosystems at unprecedented levels, as reported by the literature. The strengthening of the oligotrophic conditions in the study area may also apply as a cautionary warning to similar coastal ecosystems around the world following the global warming trend.


2008 ◽  
Vol 87 (3) ◽  
pp. 201-206 ◽  
Author(s):  
A. Stuijs ◽  
H. Brinkhuis

The Paleocene-Eocene Thermal Maximum (PETM), ~55.5 Myr ago, was a geologically brief (~170 kyr) episode of globally elevated temperatures, which occurred superimposed on the long-term late Paleocene and early Eocene warming trend (Fig. 1). It was marked by a 5 – 8° C warming in both low and high-latitude regions, a perturbation of the hydrological cycle and major biotic response on land and in the oceans, including radiations, extinctions and migrations (see overviews in Bowen et al., 2006; Sluijs et al., 2007a).


2020 ◽  
Author(s):  
Pedro M. Sousa ◽  
Alexandre M. Ramos ◽  
Ricardo M. Trigo ◽  
Christoph C. Raible ◽  
Martina Messmer ◽  
...  

<p>Moisture transport and Atmospheric Rivers (ARs) over the Northeastern Atlantic are a very relevant process for the inter-annual variability of precipitation over Western Europe. Based on a long-term transient simulation (850-2100CE) from the CESM model, we have showed that moisture transport towards Western Europe (using the vertically integrated horizontal water vapor transport, IVT) has been increasing significantly since pre-industrial period, in a clear association with the global warming trend. Both current and projected changes (using RCP 8.5) significantly exceed the range given by inter-annual to inter-decadal internal/external variability observed during the last millennium.</p><p>We have checked the emergence of the temperature, IVT and precipitation signals in Iberia and the UK, showing that while the first two have now clearly emerged from the pre-warming state, precipitation series are still slightly below that threshold. Nevertheless, projections clearly show an increase in rainfall at higher latitudes (i in phase with a warmer and moister atmosphere); and a decrease at lower latitudes decoupled from the overall increase in moisture availability. Additionally we have explored the role played by large-scale circulation and atmospheric dynamics for these contrasting projections. Overall, results show that a poleward migration of moisture corridors and ARs explain a significant fraction of these projected trends. Based on the Clausius–Clapeyron relation we have separated the thermodynamical from dynamical changes. We also show how that a significant increase in subtropical anticyclonic activity over Iberia is responsible for: i) dynamical circulation changes; ii) a shortening of the wet season; iii) to less efficient precipitation regimes in the region. These results highlight the urge to adapt to a drying trend in Mediterranean-type climates, as a consequence of Global Warming.</p><p> </p><p>The financial support for this work was possible through the following FCT project: HOLMODRIVE - North Atlantic Atmospheric Patterns influence on Western Iberia Climate: From the Lateglacial to the Present [PTDC/CTA-GEO/29029/2017]</p>


2017 ◽  
Vol 30 (10) ◽  
pp. 3687-3703 ◽  
Author(s):  
Chunlüe Zhou ◽  
Kaicun Wang

Abstract Precipitation is expected to increase under global warming. However, large discrepancies in precipitation sensitivities to global warming among observations and models have been reported, partly owing to the large natural variability of precipitation, which accounts for over 90% of its total variance in China. Here, the authors first elucidated precipitation sensitivities to the long-term warming trend and interannual–decadal variations of surface air temperature Ta over China based on daily data from approximately 2000 stations from 1961 to 2014. The results show that the number of dry, trace, and light precipitation days has stronger sensitivities to the warming trend than to the Ta interannual–decadal variation, with 14.1%, −35.7%, and −14.6% K−1 versus 2.7%, −7.9%, and −3.1% K−1, respectively. Total precipitation frequency has significant sensitivities to the warming trend (−18.5% K−1) and the Ta interannual–decadal variation (−3.6% K−1) over China. However, very heavy precipitation frequencies exhibit larger sensitivities to the Ta interannual–decadal variation than to the long-term trend over Northwest and Northeast China and the Tibetan Plateau. A warming trend boosts precipitation intensity, especially for light precipitation (9.8% K−1). Total precipitation intensity increases significantly by 13.1% K−1 in response to the warming trend and by 3.3% K−1 in response to the Ta interannual–decadal variation. Very heavy precipitation intensity also shows significant sensitivity to the interannual–decadal variation of Ta (3.7% K−1), particularly in the cold season (8.0% K−1). Combining precipitation frequency and intensity, total precipitation amount has a negligible sensitivity to the warming trend, and the consequent trend in China is limited. Moderate and heavy precipitation amounts are dominated by their frequencies.


Author(s):  
Suman Kumar Sharma

Sustainability of life form on the earth is a major concern of every nation, which stems from the continued global warming trend, which has become a major policy, political, and economic issue. Global warming is the most important challenge thrown by the human activities largely due to rapid pace of industrialization in the twenty first century. The impact is likely to extend to next few centuries and unless controlled there would be irrevocable damage to the life form on this planet. Human made halocarbons have a high global warming potential, and some still have the potential to cause damage to the ozone layer as well if released to the atmosphere. The implications of global warming have far-reaching effects beyond the imagination of common person. Rise in global temperature, rise in sea level, food shortages, large scale spread of diseases & infections, catastrophic economic consequences and colossal loss of bio-diversity are some of the major implications of global warming trend. Although many methods are in vogue for comparison of impact of global warming of different compounds, yet the concept of Global warming potential with reference to Carbon dioxide is the simplest one and is widely used. An endeavor has been made in this paper to correlate and develop empirical relations of global warming potential and atmospheric lifetimes of Halocarbons. A new parameter Glife has been evolved for this purpose.


2021 ◽  
Author(s):  
Antonio Sánchez Benítez ◽  
Thomas Jung ◽  
Helge Goessling ◽  
Felix Pithan ◽  
Tido Semmler

<p>Under the current global warming trend, heatwaves are becoming more intense, frequent, and longer-lasting; and this trend will continue in the future. In this context, the recent 2019 summer was exceptionally hot in large areas of the Northern Hemisphere, with embedded heatwaves, as for example the June and July 2019 European events, redrawing the temperature record map in western Europe. Large-scale dynamics (associated with blockings or subtropical ridges) play a key role in explaining these-large scale events.</p><p>Conceptually, global warming can be split into two different contributions: Dynamic and thermodynamic changes. Whereas dynamic changes remain highly uncertain, some thermodynamic changes can be quantified with higher confidence. We exploit this concept by studying how these recent European heatwaves would have developed in a pre-industrial climate and how it would develop in the future for 1.5, 2 and 4 ºC warmer climates (storyline scenarios). To do so, we employ the spectral nudging technique with AWI-CM (CMIP6 model, a combination of ECHAM6 AGCM + FESOM Sea Ice-Ocean Model). Large-scale dynamics are prescribed by reanalysis data (ERA5). Meanwhile, the model is run for different boundary conditions corresponding to preindustrial and future climates along the SSP370 forcing scenario. This approach can be useful to help understand and communicate what climate change will mean to people’s life and hence facilitate effective decision-making regarding adaptation to climate change, as we are quantifying how recent outstanding events would be modified by our climate action. </p><p>Temperatures during the heatwaves often increase twice as much as global mean temperatures, especially in a future 4 ºC warmer climate. In this future climate, maximum temperatures can locally reach 50ºC in many western Europe countries. Nighttime temperatures would be similar to the daytime temperatures in a preindustrial world. The global warming amplification can be partly explained by a robust soil drying in the future 4 ºC warmer climate (exacerbated due to the June 2019 heatwave) which is transmitted to a robust increase in Bowen ratio. Importantly, by design of our study, this response occurs without any changes in atmospheric circulation.</p>


Sign in / Sign up

Export Citation Format

Share Document