Data-driven decomposition of long-term echosounder time series from ocean observatories

2017 ◽  
Vol 142 (4) ◽  
pp. 2719-2719 ◽  
Author(s):  
Wu-Jung Lee ◽  
Valentina Staneva ◽  
Bernease Herman ◽  
Aleksandr Aravkin
Keyword(s):  
2011 ◽  
Vol 21 (04) ◽  
pp. 1113-1125 ◽  
Author(s):  
HOLGER LANGE

In ecosystem research, data-driven approaches to modeling are of major importance. Models are more often than not shaped by the spatiotemporal structure of the observations: an inverse modeling approach prevails. Here, I investigate the insights obtained from Recurrence Quantification Analysis of observed ecosystem time series. As a typical example of available long-term monitoring data, I choose time series from hydrology and hydrochemistry. Besides providing insights into the nonstationary and nonlinear dynamics of these variables, RQA also enables a detailed and temporally local model-data comparison.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bin Sun ◽  
Liyao Ma ◽  
Tao Shen ◽  
Renkang Geng ◽  
Yuan Zhou ◽  
...  

Internet of Things (IoT) is emerging, and 5G enables much more data transport from mobile and wireless sources. The data to be transmitted is too much compared to link capacity. Labelling data and transmit only useful part of the collected data or their features is a promising solution for this challenge. Abnormal data are valuable due to the need to train models and to detect anomalies when being compared to already overflowing normal data. Labelling can be done in data sources or edges to balance the load and computing between sources, edges, and centres. However, unsupervised labelling method is still a challenge preventing to implement the above solutions. Two main problems in unsupervised labelling are long-term dynamic multiseasonality and heteroscedasticity. This paper proposes a data-driven method to handle modelling and heteroscedasticity problems. The method contains the following main steps. First, raw data are preprocessed and grouped. Second, main models are built for each group. Third, models are adapted back to the original measured data to get raw residuals. Fourth, raw residuals go through deheteroscedasticity and become normalized residuals. Finally, normalized residuals are used to conduct anomaly detection. The experimental results with real-world data show that our method successfully increases receiver-operating characteristic (AUC) by about 30%.


2021 ◽  
pp. 147592172110097
Author(s):  
Yangtao Li ◽  
Tengfei Bao ◽  
Zhixin Gao ◽  
Xiaosong Shu ◽  
Kang Zhang ◽  
...  

With the rapid development of information and communication techniques, dam structural health assessment based on data collected from structural health monitoring systems has become a trend. This allows for applying data-driven methods for dam safety analysis. However, data-driven models in most related literature are statistical and shallow machine learning models, which cannot capture the time series patterns or learn from long-term dependencies of dam structural response time series. Furthermore, the effectiveness and applicability of these models are only validated in a small data set and part of monitoring points in a dam structural health monitoring system. To address the problems, this article proposes a new modeling paradigm based on various deep learning and transfer learning techniques. The paradigm utilizes one-dimensional convolutional neural networks to extract the inherent features from dam structural response–related environmental quantity monitoring data. Then bidirectional gated recurrent unit with a self-attention mechanism is used to learn from long-term dependencies, and transfer learning is utilized to transfer knowledge learned from the typical monitoring point to the others. The proposed paradigm integrates the powerful modeling capability of deep learning networks and the flexible transferability of transfer learning. Rather than traditional models that rely on experience for feature selection, the proposed deep learning–based paradigm directly utilizes environmental monitoring time series as inputs to accurately estimate dam structural response changes. A high arch dam in long-term service is selected as the case study, and three monitoring items, including dam displacement, crack opening displacement, and seepage are used as the research objects. The experimental results show that the proposed paradigm outperforms conventional and shallow machine learning–based methods in all 41 tested monitoring points, which indicates that the proposed paradigm is capable of dealing with dam structural response estimation with high accuracy and robustness.


2016 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. D. García ◽  
O. E. García ◽  
E. Cuevas ◽  
V. E. Cachorro ◽  
A. Barreto ◽  
...  

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1151
Author(s):  
Carolina Gijón ◽  
Matías Toril ◽  
Salvador Luna-Ramírez ◽  
María Luisa Marí-Altozano ◽  
José María Ruiz-Avilés

Network dimensioning is a critical task in current mobile networks, as any failure in this process leads to degraded user experience or unnecessary upgrades of network resources. For this purpose, radio planning tools often predict monthly busy-hour data traffic to detect capacity bottlenecks in advance. Supervised Learning (SL) arises as a promising solution to improve predictions obtained with legacy approaches. Previous works have shown that deep learning outperforms classical time series analysis when predicting data traffic in cellular networks in the short term (seconds/minutes) and medium term (hours/days) from long historical data series. However, long-term forecasting (several months horizon) performed in radio planning tools relies on short and noisy time series, thus requiring a separate analysis. In this work, we present the first study comparing SL and time series analysis approaches to predict monthly busy-hour data traffic on a cell basis in a live LTE network. To this end, an extensive dataset is collected, comprising data traffic per cell for a whole country during 30 months. The considered methods include Random Forest, different Neural Networks, Support Vector Regression, Seasonal Auto Regressive Integrated Moving Average and Additive Holt–Winters. Results show that SL models outperform time series approaches, while reducing data storage capacity requirements. More importantly, unlike in short-term and medium-term traffic forecasting, non-deep SL approaches are competitive with deep learning while being more computationally efficient.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 416
Author(s):  
Bwalya Malama ◽  
Devin Pritchard-Peterson ◽  
John J. Jasbinsek ◽  
Christopher Surfleet

We report the results of field and laboratory investigations of stream-aquifer interactions in a watershed along the California coast to assess the impact of groundwater pumping for irrigation on stream flows. The methods used include subsurface sediment sampling using direct-push drilling, laboratory permeability and particle size analyses of sediment, piezometer installation and instrumentation, stream discharge and stage monitoring, pumping tests for aquifer characterization, resistivity surveys, and long-term passive monitoring of stream stage and groundwater levels. Spectral analysis of long-term water level data was used to assess correlation between stream and groundwater level time series data. The investigations revealed the presence of a thin low permeability silt-clay aquitard unit between the main aquifer and the stream. This suggested a three layer conceptual model of the subsurface comprising unconfined and confined aquifers separated by an aquitard layer. This was broadly confirmed by resistivity surveys and pumping tests, the latter of which indicated the occurrence of leakage across the aquitard. The aquitard was determined to be 2–3 orders of magnitude less permeable than the aquifer, which is indicative of weak stream-aquifer connectivity and was confirmed by spectral analysis of stream-aquifer water level time series. The results illustrate the importance of site-specific investigations and suggest that even in systems where the stream is not in direct hydraulic contact with the producing aquifer, long-term stream depletion can occur due to leakage across low permeability units. This has implications for management of stream flows, groundwater abstraction, and water resources management during prolonged periods of drought.


Author(s):  
Ye Yuan ◽  
Stefan Härer ◽  
Tobias Ottenheym ◽  
Gourav Misra ◽  
Alissa Lüpke ◽  
...  

AbstractPhenology serves as a major indicator of ongoing climate change. Long-term phenological observations are critically important for tracking and communicating these changes. The phenological observation network across Germany is operated by the National Meteorological Service with a major contribution from volunteering activities. However, the number of observers has strongly decreased for the last decades, possibly resulting in increasing uncertainties when extracting reliable phenological information from map interpolation. We studied uncertainties in interpolated maps from decreasing phenological records, by comparing long-term trends based on grid-based interpolated and station-wise observed time series, as well as their correlations with temperature. Interpolated maps in spring were characterized by the largest spatial variabilities across Bavaria, Germany, with respective lowest interpolated uncertainties. Long-term phenological trends for both interpolations and observations exhibited mean advances of −0.2 to −0.3 days year−1 for spring and summer, while late autumn and winter showed a delay of around 0.1 days year−1. Throughout the year, temperature sensitivities were consistently stronger for interpolated time series than observations. Such a better representation of regional phenology by interpolation was equally supported by satellite-derived phenological indices. Nevertheless, simulation of observer numbers indicated that a decline to less than 40% leads to a strong decrease in interpolation accuracy. To better understand the risk of declining phenological observations and to motivate volunteer observers, a Shiny app is proposed to visualize spatial and temporal phenological patterns across Bavaria and their links to climate change–induced temperature changes.


Sign in / Sign up

Export Citation Format

Share Document