Rhythm and Reaching: The Influence of Rhythmic Auditory Cueing in a Goal-Directed Reaching Task With Adults Diagnosed With Cerebral Palsy

2021 ◽  
pp. 1-16
Author(s):  
Jacqueline C. Ladwig ◽  
Tamires C. do Prado ◽  
Stephanie J. Tomy ◽  
Jonathan J. Marotta ◽  
Cheryl M. Glazebrook

Improvements in functional reaching directly support improvements in independence. The addition of auditory inputs (e.g., music, rhythmic counting) may improve goal-directed reaching for individuals with cerebral palsy (CP). To effectively integrate auditory stimuli into adapted teaching and rehabilitation protocols, it is necessary to understand how auditory stimuli may enhance limb control. This study considered the influence of auditory stimuli during the planning or execution phases of goal-directed reaches. Adults (with CP = 10, without CP = 10) reached from a home switch to two targets. Three conditions were presented—no sound, sound before, and sound during—and three-dimensional movement trajectories were recorded. Reaction times were shorter for both groups in the sound before condition, while the group with CP also reached peak velocity relatively earlier in the sound before condition. The group with CP executed more consistent movements in both sound conditions. Sound presented before movement initiation improved both the planning and execution of reaching movements for adults with CP.

2009 ◽  
Vol 29 (8) ◽  
pp. 896-902 ◽  
Author(s):  
Shinichi Gose ◽  
Takashi Sakai ◽  
Toru Shibata ◽  
Tsuyoshi Murase ◽  
Hideki Yoshikawa ◽  
...  

1954 ◽  
Vol 100 (419) ◽  
pp. 462-477 ◽  
Author(s):  
K. R. L. Hall ◽  
E. Stride

A number of studies on reaction time (R.T.) latency to visual and auditory stimuli in psychotic patients has been reported since the first investigations on the personal equation were carried out. The general trends from the work up to 1943 are well summarized by Hunt (1944), while Granger's (1953) review of “Personality and visual perception” contains a summary of the studies on R.T. to visual stimuli.


2017 ◽  
Vol 117 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Kévin Marche ◽  
Paul Apicella

Recent works highlight the importance of local inhibitory interneurons in regulating the function of the striatum. In particular, fast-spiking interneurons (FSIs), which likely correspond to a subgroup of GABAergic interneurons, have been involved in the control of movement by exerting strong inhibition on striatal output pathways. However, little is known about the exact contribution of these presumed interneurons in movement preparation, initiation, and execution. We recorded the activity of FSIs in the striatum of monkeys as they performed reaching movements to a visual target under two task conditions: one in which the movement target was presented at unsignaled left or right locations, and another in which advance information about target location was available, thus allowing monkeys to react faster. Modulations of FSI activity around the initiation of movement (53% of 55 neurons) consisted mostly of increases reaching maximal firing immediately before or, less frequently, after movement onset. Another subset of FSIs showed decreases in activity during movement execution. Rarely did movement-related changes in FSI firing depend on response direction and movement speed. Modulations of FSI activity occurring relatively early in relation to movement initiation were more influenced by the preparation for movement, compared with those occurring later. Conversely, FSI activity remained unaffected, as monkeys were preparing a movement toward a specific location and instead moved to the opposite direction when the trigger occurred. These results provide evidence that changes in activity of presumed GABAergic interneurons of the primate striatum could make distinct contributions to processes involved in movement generation. NEW & NOTEWORTHY We explored the functional contributions of striatal fast-spiking interneurons (FSIs), presumed GABAergic interneurons, to distinct steps of movement generation in monkeys performing a reaching task. The activity of individual FSIs was modulated before and during the movement, consisting mostly of increased in firing rates. Changes in activity also occurred during movement preparation. We interpret this variety of modulation types at different moments of task performance as reflecting differential FSI control over distinct phases of movement.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Javed Riaz ◽  
Sophie Bestley ◽  
Simon Wotherspoon ◽  
Louise Emmerson

Abstract Background Diving marine predators forage in a three-dimensional environment, adjusting their horizontal and vertical movement behaviour in response to environmental conditions and the spatial distribution of prey. Expectations regarding horizontal-vertical movements are derived from optimal foraging theories, however, inconsistent empirical findings across a range of taxa suggests these behavioural assumptions are not universally applicable. Methods Here, we examined how changes in horizontal movement trajectories corresponded with diving behaviour and marine environmental conditions for a ubiquitous Southern Ocean predator, the Adélie penguin. Integrating extensive telemetry-based movement and environmental datasets for chick-rearing Adélie penguins at Béchervaise Island, we tested the relationships between horizontal move persistence (continuous scale indicating low [‘resident’] to high [‘directed’] movement autocorrelation), vertical dive effort and environmental variables. Results Penguins dived continuously over the course of their foraging trips and lower horizontal move persistence corresponded with less intense foraging activity, likely indicative of resting behaviour. This challenges the traditional interpretation of horizontal-vertical movement relationships based on optimal foraging models, which assumes increased residency within an area translates to increased foraging activity. Movement was also influenced by different environmental conditions during the two stages of chick-rearing: guard and crèche. These differences highlight the strong seasonality of foraging habitat for chick-rearing Adélie penguins at Béchervaise Island. Conclusions Our findings advance our understanding of the foraging behaviour for this marine predator and demonstrates the importance of integrating spatial location and behavioural data before inferring habitat use.


2021 ◽  
Vol 27 (1) ◽  
pp. 30-35
Author(s):  
Uğur ÖDEK ◽  
Feza KORKUSUZ ◽  
Sadettin KİRAZCI

ABSTRACT Introduction Swimming starts are an important component for decreasing the total race time, especially in short events. In this phase of swimming, the aim is to increase performance using many different techniques and starting platforms. Objectives The effects of height and slope of the starting block on kick-start performance were assessed in this study. Methods Six male competitive swimmers performed 24 kick-starts using four block settings: 65 cm & 75 cm flat and 65 cm & 75 cm sloped. Two-dimensional kinetic and three-dimensional kinematic data were analyzed, including average and maximum horizontal/vertical forces and impulses; reaction times; movement and block times; and take-off vertical/horizontal velocities. Two-way within-subject design ANOVAs were implemented to test the effects of block height and slope on the kinetic and kinematic variables. Results Block slope was the main factor affecting most of the dependent variables. Shorter block and movement times, greater average and maximum vertical forces, vertical impulse, and maximum horizontal force were found for the sloped settings. An inverse relationship was found between block height and 0-5 m times. Conclusion Based on the results, blocks with height of 75 cm and slope of 10° provided better results in swimmers’ performance in the block phase. Level of evidence II, Therapeutic Studies -Investigating the Results of Treatment


2018 ◽  
Vol 7 ◽  
pp. 172-177
Author(s):  
Łukasz Tyburcy ◽  
Małgorzata Plechawska-Wójcik

The paper describes results of comparison of reactions times to visual and auditory stimuli using EEG evoked potentials. Two experiments were used to applied. The first one explored reaction times to visual stimulus and the second one to auditory stimulus. After conducting an analysis of data, received results enable determining that visual stimuli evoke faster reactions than auditory stimuli.


Author(s):  
Gary A. Mirka ◽  
Ann Baker

The goal of this study was to quantify the variability of the three-dimensional kinematic and kinetic parameters describing the motion of the torso during the performance of sagittally symmetric lifting tasks. Subjects performed eight repetitions of simple lifting tasks described by three levels of coupling (poor, fair and good) and seven levels of load (4.5, 9, 13.5, 18, 22.5, 27 and 31.5 kg). The three-dimensional, time dependent position, velocity and acceleration of the lumbar spine were monitored using the Lumbar Motion Monitor. These measures were then input into a dynamic biomechanical model which calculated torque about the L5/S1 joint in the sagittal plane. The results of the kinematic analysis showed significant variability in the magnitude of the peak velocity and acceleration in the sagittal plane and also showed significant motion in the transverse and coronal planes. The kinetic analysis showed an increase in the variability of the peak dynamic torque with greater levels of load but no coupling effect.


2018 ◽  
Vol 43 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Ingrid Skaaret ◽  
Harald Steen ◽  
Terje Terjesen ◽  
Inger Holm

Background: Different types of ankle-foot orthoses are commonly used following lower limb surgery in children with bilateral spastic cerebral palsy. After three-dimensional gait analysis 1 year postoperatively, many children are recommended continued use of ankle-foot orthoses. Objectives: Our aims were to quantify the impact of ankle-foot orthoses on gait 1 year postoperatively and evaluate predictors for clinically important improvement. Study design: Prospective cohort study. Methods: A total of 34 ambulating children with bilateral cerebral palsy, with mean age 11 years (range 6–17), comprising 12 girls and 22 boys, were measured with three-dimensional gait analysis preoperatively (barefoot) and 1 year postoperatively (barefoot and with ankle-foot orthoses). Outcome was evaluated using gait profile score, key kinematic, kinetic and temporal–spatial variables in paired sample comparisons. Logistic regression was used to evaluate predictors for clinically important improvement with orthoses (⩾1.6° change in gait profile score). Results: Walking barefoot 1 year postoperatively, major improvements were seen in gait profile score and key variables. With ankle-foot orthoses, there were significantly improved step length and velocity, additional moderate reduction/improvement in gait profile score and knee moments and decreased stance ankle dorsiflexion compared to barefoot. Children using ground reaction ankle-foot orthoses ( n = 14) decreased stance knee flexion from 13.9° walking barefoot to 8.2° with orthoses. High gait profile score and more gait dysfunction preoperatively were significant predictors of clinically important improvement walking with orthoses. Conclusion: The results indicate improved gait function walking with ankle-foot orthoses versus barefoot 1 year after lower limb surgery. Stronger impact of ankle-foot orthoses was found in children with more pronounced gait dysfunction preoperatively. Clinical relevance The 1-year postoperative three-dimensional gait analysis is a useful method to assess treatment outcome after lower limb surgery in children with bilateral cerebral palsy and could also guide clinicians whether further treatment with ankle-foot orthoses is indicated, using clinically important differences as thresholds to evaluate their impact on gait.


Sign in / Sign up

Export Citation Format

Share Document