Effects of Ingesting Supplements Designed to Promote Lean Tissue Accretion on Body Composition during Resistance Training

1996 ◽  
Vol 6 (3) ◽  
pp. 234-246 ◽  
Author(s):  
Richard B. Kreider ◽  
Robert Klesges ◽  
Karen Harmon ◽  
Pamela Grindstaff ◽  
Leigh Ramsey ◽  
...  

This study examined the effects of ingesting nutritional supplements designed to promote lean tissue accretion on body composition alterations during resistance training. Twenty-eight resistance-trained males blindly supplemented their diets with maltodextrin (M), Gainers Fuel® 1000 (GF), or Phosphagain™ (P). No significant differences were observed in absolute or relative total body water among groups. Energy intake and body weight significantly increased in all groups combined throughout the study with no group or interaction differences observed. Dual energy x-ray absorptiometry-determined body mass significantly increased in each group throughout the study with significantly greater gains observed in the GF and P groups. Lean tissue mass (excluding bone) gain was significantly greater in the P group, while fat mass and percent body fat were significantly increased in the GF group. Results indicate that total body weight significantly increased in each group and that P supplementation resulted in significantly greater gains in lean tissue mass during resistance training.

Author(s):  
Annelies Van Eyck ◽  
Sofie Eerens ◽  
Dominique Trouet ◽  
Eline Lauwers ◽  
Kristien Wouters ◽  
...  

AbstractThere is an increasing need for suitable tools to evaluate body composition in paediatrics. The Body Composition Monitor (BCM) shows promise as a method, but reference values in children are lacking. Twenty children were included and measured twice by 4 different raters to asses inter- and intra-rater reproducibility of the BCM. Reliability was assessed using the Bland-Altman method and by calculating intraclass correlation coefficients (ICCs). The intra-rater ICCs were high (≥ 0.97) for all parameters measured by BCM as were the inter-rater ICCs for all parameters (≥ 0.98) except for overhydration (0.76). Consequently, a study was set up in which BCM measurements were performed in 2058 healthy children aged 3–18.5 years. The age- and gender-specific percentile values and reference curves for body composition (BMI, waist circumference, fat mass and lean tissue mass) and fluid status (extracellular and intracellular water and total body water) relative to age were produced using the GAMLSS method for growth curves.Conclusion: A high reproducibility of BCM measurements was found for fat mass, lean tissue mass, extracellular water and total body water. Reference values for these BCM parameters were calculated in over 2000 children and adolescents aged 3 to 18 years. What is Known• The 4-compartment model is regarded as the ‘gold standard’ of body composition methods, but is inappropriate for regular follow-up or screening of large groups, because of associated limitations. • Body Composition Monitor® is an inexpensive field method that has the potential to be an adequate monitoring tool.What is New• Good reproducibility of BCM measurements in children provides evidence to use the device in longitudinal follow-up, multicentre and comparative studies.• Paediatric reference values relative to age and sex for the various compartments of the body are provided.


2000 ◽  
Vol 88 (4) ◽  
pp. 1310-1315 ◽  
Author(s):  
Ann M. Spungen ◽  
Jack Wang ◽  
Richard N. Pierson ◽  
William A. Bauman

To determine the effect of paralysis on body composition, eight pairs of male monozygotic twins, one twin in each pair with paraplegia, were studied by dual-energy X-ray absorptiometry. Significant loss of total body lean tissue mass was found in the paralyzed twins compared with their able-bodied co-twins: 47.5 ± 6.7 vs. 60.1 ± 7.8 (SD) kg ( P < 0.005). Regionally, arm lean tissue mass was not different between the twin pairs, whereas trunk and leg lean tissue masses were significantly lower in the paralyzed twins: −3.0 ± 3.3 kg ( P < 0.05) and −10.1 ± 4.0 kg ( P < 0.0005), respectively. Bone mineral content of the total body and legs was significantly related to lean tissue mass in the able-bodied twins ( R = 0.88 and 0.98, respectively) but not in the paralyzed twins. However, the intrapair difference scores for bone and lean tissue mass were significantly related ( R = 0.80 and 0.81, respectively). The paralyzed twins had significantly more total body fat mass and percent fat per unit body mass index than the able-bodied twins: 4.8 kg ( P < 0.05) and 7 ± 2% ( P< 0.01). In the paralyzed twins, total body lean tissue was significantly lost (mostly from the trunk and legs), independent of age, at a rate of 3.9 ± 0.2 kg per 5-yr period of paralysis ( R = 0.87, P < 0.005). Extreme disuse from paralysis appears to contribute to a parallel loss of bone with loss of lean tissue in the legs. The continuous lean tissue loss may represent a form of sarcopenia that is progressive and accelerated compared with that in ambulatory individuals.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1912
Author(s):  
Scott C. Forbes ◽  
Darren G. Candow ◽  
Sergej M. Ostojic ◽  
Michael D. Roberts ◽  
Philip D. Chilibeck

Creatine supplementation in conjunction with resistance training (RT) augments gains in lean tissue mass and strength in aging adults; however, there is a large amount of heterogeneity between individual studies that may be related to creatine ingestion strategies. Therefore, the purpose of this review was to (1) perform updated meta-analyses comparing creatine vs. placebo (independent of dosage and frequency of ingestion) during a resistance training program on measures of lean tissue mass and strength, (2) perform meta-analyses examining the effects of different creatine dosing strategies (lower: ≤5 g/day and higher: >5 g/day), with and without a creatine-loading phase (≥20 g/day for 5–7 days), and (3) perform meta-analyses determining whether creatine supplementation only on resistance training days influences measures of lean tissue mass and strength. Overall, creatine (independent of dosing strategy) augments lean tissue mass and strength increase from RT vs. placebo. Subanalyses showed that creatine-loading followed by lower-dose creatine (≤5 g/day) increased chest press strength vs. placebo. Higher-dose creatine (>5 g/day), with and without a creatine-loading phase, produced significant gains in leg press strength vs. placebo. However, when studies involving a creatine-loading phase were excluded from the analyses, creatine had no greater effect on chest press or leg press strength vs. placebo. Finally, creatine supplementation only on resistance training days significantly increased measures of lean tissue mass and strength vs. placebo.


2006 ◽  
Vol 16 (3) ◽  
pp. 233-244 ◽  
Author(s):  
Darren G. Candow ◽  
Natalie C. Burke ◽  
T. Smith-Palmer ◽  
Darren G. Burke

The purpose was to compare changes in lean tissue mass, strength, and myof-brillar protein catabolism resulting from combining whey protein or soy protein with resistance training. Twenty-seven untrained healthy subjects (18 female, 9 male) age 18 to 35 y were randomly assigned (double blind) to supplement with whey protein (W; 1.2 g/kg body mass whey protein + 0.3 g/kg body mass sucrose power, N = 9: 6 female, 3 male), soy protein (S; 1.2 g/kg body mass soy protein + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) or placebo (P; 1.2 g/kg body mass maltodextrine + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) for 6 wk. Before and after training, measurements were taken for lean tissue mass (dual energy X-ray absorptiometry), strength (1-RM for bench press and hack squat), and an indicator of myofbrillar protein catabolism (urinary 3-methylhistidine). Results showed that protein supplementation during resistance training, independent of source, increased lean tissue mass and strength over isocaloric placebo and resistance training (P < 0.05). We conclude that young adults who supplement with protein during a structured resistance training program experience minimal beneficial effects in lean tissue mass and strength.


2013 ◽  
Vol 38 (11) ◽  
pp. 1147-1153
Author(s):  
Andrew W. Froehle ◽  
Susan R. Hopkins ◽  
Loki Natarajan ◽  
Margaret J. Schoeninger

Postmenopausal women experience an age-related decline in resting energy expenditure (REE), which is a risk factor for energy imbalance and metabolic disease. Exercise, because of its association with greater lean tissue mass and other factors, has the potential to mediate REE decline, but the relation between exercise and REE in postmenopausal women is not well characterized. This study tests the hypothesis that exercise energy expenditure (EEE) is positively associated with REE and can counter the effects of age and menopause. It involves a cross-sectional sample of 31 healthy postmenopausal women (aged 49–72 years) with habitual exercise volumes at or above levels consistent with current clinical recommendations. Subjects kept exercise diaries for 4 weeks that quantified exercise activity and were measured for body composition, maximal oxygen uptake, and REE. Multiple regression analysis was used to test for associations between EEE, age, body composition, and REE. There was a significant positive relation between EEE and lean tissue mass (fat-free mass and fat-free mass index). The relation between REE and EEE remained significant even after controlling for lean tissue mass. These results support the hypothesis that exercise is positively associated with REE and can counter the negative effects of age and menopause. They also indicate a continuous relation between exercise and REE across ranges of exercise, from moderate to high. Exercise at levels that are at or above current clinical guidelines might, in part, ameliorate the risk for energy imbalance and metabolic disease because of its positive relation with REE.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
F De Ieso ◽  
M Mutke ◽  
J Du Fay De Lavallaz ◽  
C Raichle ◽  
N Brasier ◽  
...  

Abstract Background Guidance for intensified diuretic therapy in acute heart failure (AHF) is mainly based on body weight measurement, frequently leading to a short episode of dehydration with kidney failure after recompensation. In addition, patients often present immobilized due to severe health issues making weight measurement stressful. Purpose Bioelectrical impedance analysis (BIA) may be a more direct approach to guide intensified diuretic therapy analysing patient's body composition. We hypothesized that patient's weight loss during therapy correlates with loss of body water measured by BIA. Therefore, we tested if this method could be an alternative to daily weight measurement. Methods We conducted an observational, single-centre study to evaluate and monitor body composition of patients hospitalised with AHF, adjudicated according to current ESC/HFA guidelines by a cardiologist. We used an eight-electrode, segmental, multi-frequency body composition analyser, previously validated against air displacement plethysmography, whole body MRI, deuterium and sodium bromide dilution. We investigated patients until hospital discharge or latest one day after ending intensified diuretic therapy. Disease specific properties, BIA and weight measurement were assessed daily. Furthermore, we investigated BIA raw data. Results 390 BIA were applied on 76 patients (47 men; 29 women; mean age 76±11 years; mean weight 75.6±15.7 kg). 34 patients presented with global, 27 with left-heart, 8 with right-heart and 7 with not specified AHF. 44 patients presented with pleural effusion. Pearson correlations showed that total body water (r=0.737, p≤0.001) and extracellular water (r=0.69, p≤0.001) correlated each with total body weight. Changes in total body water accurately (within a range of ± 1kg) reflected changes in total body weight in 40.28% of the patients and changes in extracellular water showed a similarly accurate reflection of total body weight change in 68.06% of the patients. BIA raw-data analysis showed significant changes using Wilcoxon test between measurements at the beginning of intensified diuretic therapy and at its end. We found a significant increase of resistance (mean from 334.6±67.5 to 362.8±69.5 Ohm/m; p=0.021) and reactance (mean from 21.3±7.1 to 24.1±6.2 Ohm/m; p=0.009) standardized to patients height and a non-significant increase of phase angle (mean from 3.6±0.9 to 3.8±0.8 °; p=0.149) during hospitalisation. Conclusion BIA is able to estimate changes in total body weight by analysing changes in extracellular body water in patients under intensified diuretic therapy and raw data analysis seems even more accurate and promising. This data derive from a heterogeneous AHF patient group, needing further investigation. Once validated, wearable BIA connected to an automated device monitoring system would enable an easy to use diuretic therapy monitoring for impaired patients or outpatients and could help reducing care efforts.


Sign in / Sign up

Export Citation Format

Share Document