tissue accretion
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 4)

H-INDEX

18
(FIVE YEARS 2)

Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2866 ◽  
Author(s):  
Liping Chen ◽  
Naoki Takatani ◽  
Fumiaki Beppu ◽  
Kazuo Miyashita ◽  
Masashi Hosokawa

n-3 Polyunsaturated fatty acid binding phospholipids (n-3 PUFA-PLs) are known to be potent carriers of n-3 PUFAs and provide health benefits. We previously prepared n-3 PUFA binding phosphatidylglycerol (n-3 PUFA-PG) by phospholipase D-mediated transphosphatidylation. Because PG has excellent emulsifiability, n-3 PUFA-PG is expected to work as a functional molecule with properties of both PG and n-3 PUFAs. In the present study, the health benefits and tissue accretion of dietary n-3 PUFA-PG were examined in diabetic/obese KK-Ay mice. After a feeding duration over 30 days, n-3 PUFA-PG significantly reduced the total and non-HDL cholesterols in the serum of diabetic/obese KK-Ay mice. In the mice fed n-3 PUFA-PG, but not n-3 PUFA-TAG, hepatic lipid content was markedly alleviated depending on the neutral lipid reduction compared with the SoyPC-fed mice. Further, the n-3 PUFA-PG diet increased eicosapentaenoic acid and docosahexaenoic acid (DHA) and reduced arachidonic acid in the small intestine, liver, perirenal white adipose tissue, and brain, and the ratio of the n-6 PUFAs to n-3 PUFAs in those tissues became lower compared to the SoyPC-fed mice. Especially, the DHA level was more significantly elevated in the brains of n-3 PUFA-PG-fed mice compared to the SoyPC-fed mice, whereas n-3 PUFA-TAG did not significantly alter DHA in the brain. The present results indicate that n-3 PUFA-PG is a functional lipid for reducing serum and liver lipids and is able to supply n-3 PUFAs to KK-Ay mice.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 57-57
Author(s):  
Emma T Helm ◽  
Shelby Curry ◽  
Wesley Schweer ◽  
Carson De Mille ◽  
Eric R Burrough ◽  
...  

Abstract Porcine reproductive and respiratory syndrome (PRRS) virus is one of the most economically significant pig pathogens worldwide. The virus infects pigs at all production stages and significantly reduces the tissue accretion of growing pigs. However, the metabolic explanation for these reductions in tissue accretion remain poorly defined. Additionally, PRRS virus infection is often accompanied by reductions in feed intake, making it difficult to discern which effects are virus versus feed intake driven. To account for this, a pair-fed model was employed to examine the effects of PRRS infection and nutrient restriction on skeletal muscle and liver metabolism. Forty-eight pigs were randomly selected (11.34 ± 1.54 kg BW) and allotted to 3 treatments (n = 16 pigs/treatment): 1) PRRS naïve, ad libitum fed (Ad), 2) PRRS-inoculated, ad libitum fed (PRRS+), and 3) PRRS naïve, pair-fed to the PRRS-inoculated pigs’ daily feed intake (PF). At dpi 10 and dpi 17, 8 pigs per treatment were euthanized and tissues collected. Tissues were assayed for markers of proteolysis [longissimus skeletal muscle (LM) only], oxidative stress (LM only), and glycogen levels (LM and liver). Markers of LM proteolysis (calpain, 20s proteasome, caspase 3/7 activities) and mitochondrial reactive oxygen species production did not differ (P > 0.10) between treatment groups at either timepoint. Liver glycogen stores were reduced (P < 0.001) in PRRS+ pigs compared with both Ad and PF pigs, which did not differ from each other. Muscle glycogen did not differ (P > 0.10) between treatment groups. However, liver glycogen stores were completely depleted due to PRRS+, but not pair-feeding, indicating that liver glycogen stores and glucose are preferentially utilized by pigs to produce and support immune components. These data suggest that even under severe viral challenge and feed restriction, the pig does not upregulate LM proteolysis to re-allocate nutrients to fuel the immune response.


2019 ◽  
Vol 122 (6) ◽  
pp. 639-647 ◽  
Author(s):  
Anthony Sehl ◽  
Leslie Couëdelo ◽  
Ikram Chamekh-Coelho ◽  
Carole Vaysse ◽  
Maud Cansell

AbstractThe aim of this work was to study the bioavailability of fatty acids (FA), focusing onn-3 long-chain (LC) PUFA, carried by different molecular lipid species, that is, phospholipids (PL) or TAG, with three formulations based on fish oils or marine PL, providing a similarn-3 LC PUFA amount. The digestive lipolysis was first assessed using anin vitroenzymatic model. Then, intestinal absorption and enterocyte metabolism were investigatedin vivo, on male Wistar rats through lymph lipid analysis. Thein vitroresults showed that the release ofn-3 LC PUFA from lipolysis was increased by 48 % when FA were provided as PL rather than TAG. Thein vivoresults demonstrated that EPA and DHA from both TAG and PL were similarly absorbed and incorporated into lymph lipids. However, DHA was mainly distributed at thesn-1/3 positions of lymph TAG when provided as marine PL, whereas it was equally distributed at the three positions with marine TAG. On the whole, even if the molecular lipid species ofn-3 LC PUFA did not greatly modify thein vivodigestion and absorption steps, it modulated the rearrangement of DHA on the glyceride positions of the lymph TAG, which may further impact the DHA metabolic fate and tissue accretion. Consequently, the present study has provided data which may be used to formulate lipid diets rich in DHA in the context of an insufficient consumption ofn-3 PUFA in Western countries.


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0201367 ◽  
Author(s):  
Anna Lindblom ◽  
Cecilia Ericsson ◽  
Therese Hagstedt ◽  
Ann Kjellstedt ◽  
Jan Oscarsson ◽  
...  

2018 ◽  
Vol 119 (11) ◽  
pp. 1263-1273 ◽  
Author(s):  
Mubarek Abera ◽  
Markos Tesfaye ◽  
Bitiya Admassu ◽  
Charlotte Hanlon ◽  
Christian Ritz ◽  
...  

AbstractEarly nutrition and growth have been found to be important early exposures for later development. Studies of crude growth in terms of weight and length/height, however, cannot elucidate how body composition (BC) might mediate associations between nutrition and later development. In this study, we aimed to examine the relation between fat mass (FM) or fat-free mass (FFM) tissues at birth and their accretion during early infancy, and later developmental progression. In a birth cohort from Ethiopia, 455 children who have BC measurement at birth and 416 who have standardised rate of BC growth during infancy were followed up for outcome variable, and were included in the statistical analysis. The study sample was restricted to mothers living in Jimma town who gave birth to a term baby with a birth weight ≥1500 g and no evident congenital anomalies. The relationship between the exposure and outcome variables was examined using linear-mixed regression model. The finding revealed that FFM at birth was positively associated with global developmental progression from 1 to 5 years (β=1·75; 95 % CI 0·11, 3·39) and from 4 to 5 years (β=1·34; 95 % CI 0·23, 2·44) in the adjusted model. Furthermore, the rate of postnatal FFM tissue accretion was positively associated with development at 1 year of age (β=0·50; 95 % CI 0·01, 0·99). Neither fetal nor postnatal FM showed a significant association. In conclusion, fetal, rather than postnatal, FFM tissue accretion was associated with developmental progression. Intervention studies are needed to assess whether nutrition interventions increasing FFM also increase cognitive development.


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0196603 ◽  
Author(s):  
Sophie Carter ◽  
Stéphanie Miard ◽  
Louise Boivin ◽  
Sandrine Sallé-Lefort ◽  
Frédéric Picard

2018 ◽  
Vol 178 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Neha Bahl ◽  
Glenn Stone ◽  
Mark McLean ◽  
Ken K Y Ho ◽  
Vita Birzniece

Context Growth hormone (GH) stimulates connective tissue and muscle growth, an effect that is potentiated by testosterone. Decorin, a myokine and a connective tissue protein, stimulates connective tissue accretion and muscle hypertrophy. Whether GH and testosterone regulate decorin in humans is not known. Objective To determine whether decorin is stimulated by GH and testosterone. Design Randomized, placebo-controlled, double-blind study. Participants and Intervention 96 recreationally trained athletes (63 men, 33 women) received 8 weeks of treatment followed by a 6-week washout period. Men received placebo, GH (2 mg/day), testosterone (250 mg/week) or combination. Women received either placebo or GH (2 mg/day). Main outcome measure Serum decorin concentration. Results GH treatment significantly increased mean serum decorin concentration by 12.7 ± 4.2%; P < 0.01. There was a gender difference in the decorin response to GH, with greater increase in men than in women (∆ 16.5 ± 5.3%; P < 0.05 compared to ∆ 9.4 ± 6.5%; P = 0.16). Testosterone did not significantly change serum decorin. Combined GH and testosterone treatment increased mean decorin concentration by 19.5 ± 3.7% (P < 0.05), a change not significantly different from GH alone. Conclusion GH significantly increases circulating decorin, an effect greater in men than in women. Decorin is not affected by testosterone. We conclude that GH positively regulates decorin in humans in a gender-dimorphic manner.


2017 ◽  
Vol 1 (4) ◽  
pp. 480-488 ◽  
Author(s):  
W. Schweer ◽  
K. Schwartz ◽  
J. F. Patience ◽  
L. Karriker ◽  
C. Sparks ◽  
...  

Abstract Porcine reproductive and respiratory syndrome (PRRS) virus is a major swine virus that causes reproductive impairment in sows, as well as respiratory disease, reduction in growth rates, and mortalities in all ages of pigs. The objective of this study was to quantify the impact PRRS has on grower-finisher pig feed efficiency and tissue accretion rates. Thirty PRRS naïve, littermate pairs of maternal line Choice Genetics gilts (33.6 ± 0.58 kg BW) were selected and pairs split across 2 barns consisting of 5 pens (n = 6 pigs/pen per barn). Pigs in both barns were fed corn-soybean-DDGS diets ad libitum. All pigs in one barn were inoculated (CHAL) via an i.m. injection of a live PRRS strain isolated from the region (0 d post inoculation, dpi), while pigs in the other barn were given a saline control injection (CONT). Pig performance (ADG, ADFI, G:F) was assessed from 35 kg BW until each group reached market BW (128 kg). Additionally, longitudinal apparent total tract digestibility (ATTD) and body composition was assessed using Dual-energy X-ray absorptiometry (DXA) post inoculation (dpi) to estimate lean, protein, fat and bone accretion rates. Serological data from CHAL pigs showed that PRRS titers peaked 7 dpi and these pigs seroconverted by 35 dpi. According to both genomic and protein PRRS titers, CONT pigs were naïve to CHAL throughout the study. The PRRS infection reduced (P &lt; 0.001) ATTD of dry matter, energy and nitrogen by 3 to 5% at 21 dpi and the reduction in ATTD persisted after 65 dpi. Compared to the CONT, CHAL pigs had decreased ADG (0.89 vs. 0.80 kg/d, P &lt; 0.001), ADFI (2.05 vs. 1.93 kg/d, P &lt; 0.001), and G:F (0.44 vs. 0.41 kg/d, P &lt; 0.001) over the entire test period. The CHAL pigs also had attenuated DXA predicted whole body accretion of lean (547 vs. 633 g/d, P = 0.001), protein (109 vs. 126 g/d, P = 0.001) and fat (169 vs. 205 g/d, P = 0.001) compared to their CONT counterparts from dpi 0 to 80. Based on carcass data at slaughter (and consistent with the DXA data), CHAL pigs had leaner carcasses and reduced yields. These data clearly demonstrate that PRRS infection reduces digestibility, feed efficiency and protein accretion rates in grower-finisher pigs.


PLoS Medicine ◽  
2017 ◽  
Vol 14 (9) ◽  
pp. e1002387 ◽  
Author(s):  
Christian Fabiansen ◽  
Charles W. Yaméogo ◽  
Ann-Sophie Iuel-Brockdorf ◽  
Bernardette Cichon ◽  
Maren J. H. Rytter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document