Urine Specific Gravity as a Practical Marker for Identifying Suboptimal Fluid Intake of Runners ∼12-hr Postexercise

Author(s):  
Eric Kyle O’Neal ◽  
Samantha Louise Johnson ◽  
Brett Alan Davis ◽  
Veronika Pribyslavska ◽  
Mary Caitlin Stevenson-Wilcoxson

The legitimacy of urine specific gravity (USG) as a stand-alone measure to detect hydration status has recently been challenged. As an alternative to hydration status, the purpose of this study was to determine the diagnostic capability of using the traditional USG marker of >1.020 to detect insufficient recovery fluid consumption with consideration for moderate versus high sweat losses (2.00–2.99 or >3% body mass, respectively). Adequate recovery fluid intake was operationally defined as ≥100% beverage fluid intake plus food water from one or two meals and a snack. Runners (n = 59) provided 132 samples from five previous investigations in which USG was assessed 10–14 hr after 60–90 min runs in temperate-to-hot environments. Samples were collected after a meal (n = 58) and after waking (n = 74). When sweat losses exceeded 3% body mass (n = 60), the relationship between fluid replacement percentage and USG increased from r = −.55 to −.70. Correct diagnostic decision improved from 66.6 to 83.3%, and receiver operating characteristic area under the curve increased the diagnostic accuracy score from 0.76 to approaching excellent (0.86). Artifacts of significant prerun hyperhydration (eight of 15 samples has USG <1.005) may explain false positive diagnoses, while almost all (84%) cases of false positives were found when sweat losses were <3.0% of body mass. Evidence from this study suggests that euhydrated runners experiencing significant sweat losses who fail to reach adequate recovery fluid intake levels can be identified by USG irrespective of acute meal and fluid intake ∼12-hr postrun.

Author(s):  
Jason D. Vescovi ◽  
Greig Watson

This field-based observational study was designed to examine the intraindividual variation of first morning body mass and urine specific gravity (Usg) in male hockey players (n = 22) during a 10-day training camp. It was also designed to evaluate the prevalence and interrelationship of morning hypohydration and postmatch dehydration using Usg and changes in body mass, respectively. Body mass and Usg were measured upon waking; body mass was also measured before and after matches. Individual means, SD, and coefficient of variation (CV) were calculated for morning body mass and Usg using 3, 6, and 8 days. Daily prevalence for euhydration and postmatch dehydration using morning Usg (<1.020) and changes in body mass (>−2%), respectively, were determined. Measurement of morning body mass and Usg for 3 days had low variability (CV < 1%) with no improvement at 6 or 8 days. Between 36% and 73% of players were considered euhydrated based on morning Usg. Postmatch body mass was reduced >1% in 50–85% of players, with up to 40% experiencing changes >−2%. Postmatch changes in body mass were unrelated to Usg the subsequent morning. These outcomes can be helpful in establishing criteria for detecting meaningful changes in morning body mass and Usg in similar settings, helping to monitor hydration status in elite male athletes. Despite ample fluid availability and consumption, many players experienced hypohydration and dehydration during the camp, indicating that careful monitoring and an individual fluid replacement approach are warranted in these environments.


Author(s):  
Lawrence E. Armstrong ◽  
Amy C. Pumerantz ◽  
Kelly A. Fiala ◽  
Melissa W. Roti ◽  
Stavros A. Kavouras ◽  
...  

It is difficult to describe hydration status and hydration extremes because fluid intakes and excretion patterns of free-living individuals are poorly documented and regulation of human water balance is complex and dynamic. This investigation provided reference values for euhydration (i.e., body mass, daily fluid intake, serum osmolality; M ± SD); it also compared urinary indices in initial morning samples and 24-hr collections. Five observations of 59 healthy, active men (age 22 ± 3 yr, body mass 75.1 ± 7.9 kg) occurred during a 12-d period. Participants maintained detailed records of daily food and fluid intake and exercise. Results indicated that the mean total fluid intake in beverages, pure water, and solid foods was >2.1 L/24 hr (range 1.382–3.261, 95% confidence interval 0.970–3.778 L/24 hr); mean urine volume was >1.3 L/24 hr (0.875–2.250 and 0.675–3.000 L/24 hr); mean urine specific gravity was >1.018 (1.011–1.027 and 1.009–1.030); and mean urine color was ≥4 (4–6 and 2–7). However, these men rarely (0–2% of measurements) achieved a urine specific gravity below 1.010 or color of 1. The first morning urine sample was more concentrated than the 24-h urine collection, likely because fluids were not consumed overnight. Furthermore, urine specific gravity and osmolality were strongly correlated (r2 = .81–.91, p < .001) in both morning and 24-hr collections. These findings provide euhydration reference values and hydration extremes for 7 commonly used indices in free-living, healthy, active men who were not exercising in a hot environment or training strenuously.


2013 ◽  
Vol 38 (6) ◽  
pp. 621-625 ◽  
Author(s):  
Vahur Ööpik ◽  
Saima Timpmann ◽  
Andres Burk ◽  
Innar Hannus

We assessed the urinary indexes of hydration status of Greco-Roman wrestlers in an authentic precompetition situation at the time of official weigh-in (OWI). A total of 51 of 89 wrestlers competing in the Estonian Championship in 2009 donated a urine sample. Questionnaire responses revealed that 27 wrestlers (body mass losers (BMLs)) reduced body mass before the competition, whereas 24 wrestlers (those who do not lose body mass (n-BMLs)) did not. In 42 wrestlers, values of urine specific gravity ≥1.020 and urine osmolality ≥700 mOsmol·kg−1 revealed a hypohydrated status. The prevalence of hypohydration in the BMLs (96%) was higher than in the n-BMLs (67%) (χ2 = 7.68; p < 0.05). The prevalence of serious hypohydration (urine specific gravity >1.030) was 5.3 times greater (χ2 = 8.32; p < 0.05) in the BMLs than in the n-BMLs. In the BMLs, the extent of body mass gain during the 16-h recovery (2.5 ± 1.2 kg) was associated (r = 0.764; p < 0.05) with self-reported precompetition body mass loss (4.3 ± 2.0 kg) and exceeded the body mass gain observed in the n-BMLs (0.7 ± 1.2 kg; p < 0.05). We conclude that hypohydration is prevalent among Greco-Roman wrestlers at the time of OWI. The prevalence of hypohydration and serious hypohydration is especially high among wrestlers who are accustomed to reducing body mass before competition. These results suggest that an effective rehydration strategy is needed for Olympic-style wrestlers, and that changes in wrestling rules should be considered to reduce the prevalence of harmful body mass management behaviours.


2008 ◽  
Vol 33 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Matthew S. Palmer ◽  
Lawrence L. Spriet

Previous research in many sports suggests that losing ~1%–2% body mass through sweating impairs athletic performance. Elite-level hockey involves high-intensity bursts of skating, arena temperatures are >10 °C, and players wear protective equipment, all of which promote sweating. This study examined the pre-practice hydration, on-ice fluid intake, and sweat and sodium losses of 44 candidates for Canada’s junior men’s hockey team (mean ± SE age, 18.4 ± 0.1 y; height, 184.8 ± 0.9 cm; mass, 89.9 ± 1.1 kg). Players were studied in groups of 10–12 during 4 intense 1 h practices (13.9 °C, 66% relative humidity) on 1 day. Hydration status was estimated by measuring urine specific gravity (USG). Sweat rate was calculated from body mass changes and fluid intake. Sweat sodium concentration ([Na]) was analyzed in forehead sweat patch samples and used with sweat rate to estimate sodium loss. Over 50% of players began practice mildly hypohydrated (USG > 1.020). Sweat rate during practice was 1.8 ± 0.1 L·h–1 and players replaced 58% (1.0 ± 0.1 L·h–1) of the sweat lost. Body mass loss averaged 0.8% ± 0.1%, but 1/3 of players lost more than 1%. Sweat [Na] was 54.2 ± 2.4 mmol·L–1 and sodium loss averaged 2.26 ± 0.17 g during practice. Players drank only water during practice and replaced no sodium. In summary, elite junior hockey players incurred large sweat and sodium losses during an intense practice, but 2/3 of players drank enough to minimize body mass loss. However, 1/3 of players lost more than 1% body mass despite ready access to fluid and numerous drinking opportunities from the coaches.


2006 ◽  
Vol 31 (3) ◽  
pp. 320-327 ◽  
Author(s):  
Elizabeth A Stover ◽  
Heather J Petrie ◽  
Dennis Passe ◽  
Craig A Horswill ◽  
Bob Murray ◽  
...  

Urine specific gravity (USG) is used as an index of hydration status. Many studies have used USG to estimate pre-exercise hydration in athletes. However, very little is known about the pre-exercise hydration status of recreational exercisers. The purpose of the present study was to measure the pre-exercise USG in a large sample of recreational exercisers who attended 2 different fitness centers in the United States. In addition, we wanted to determine if factors such as time of day, geographic location, and gender influenced USG. We tested 166 subjects in Chicago and 163 subjects in Los Angeles. Subjects completed a survey on their typical training regimen and fluid-replacement habits, and thereafter voided and delivered a urine sample to the investigators prior to beginning exercise. Samples were measured on site for USG using a hand-held refractometer. The mean (SD) USG was 1.018 (± 0.007) for all subjects. Males had a higher average USG (1.020 ± 0.007) when compared with females (1.017 ± 0.008; p = 0.001). Despite differences in climate, no difference in mean USG occurred based on location or time of day. Based on standards used for athletes (USG >= 1.020), 46% of the exercisers were likely to be dehydrated.Key words: dehydration, exercise, hydration.


2020 ◽  
Author(s):  
Harriet Carroll

Background: A commonly held belief is that humans cannot survive more than a few days without fluid intake. The source of this is unclear, but does not accord with the few controlled studies that have been conducted to investigate the effects of fluid abstention, nor the few extreme cases of fluid restriction. Methods: This was a self-experimentation, with one day pre-load of fluid and salt (DAY 0), three days complete fluid abstention (&lt; 45 g/d water from food only) (DAYS 1-3), and 24 h rehydration (DAY 4). Days ran from 1500 h to 1500 h. The following measures were taken across various time points across each day: body mass; urine volume; urine colour; urine specific gravity; finger-prick blood glucose concentration; blood pressure; pulse; body temperature; dietary intake; and visual analogue scales (VAS) of food-appetites (satiety and desires), thirst-appetites, mood, wakefulness, and sleep quality. Results: By the end of DAY 3, body water (excluding estimated lean/adipose loss from negative energy balance) decreased by ~1.8 % from 1500 h on DAY 0, or ~4.0 % from 1500 h on DAY 1 (after a fluid preload). With this reduction in body mass came expected reductions in urine volume and increased in urine colour, though trends in urine specific gravity were less pronounced. Blood pressure trended towards being lower during DAYS 1-3 and increased during DAY 4. Whole blood glucose concentrations also tended towards being lower during DAYS 1-3 compared to DAY 4, particularly postprandially. Hunger tended to be reduced during DAYS 1-3, but increased again during DAY 4. Wanting to eat appeared to be a separate construct to hunger/fullness. True-thirst was higher during DAYS 1-3 relative to DAY 4, and this synchronised well with true-xerostomia and ratings of dryness of lips. However, sensational-xerostomia was the dominant thirst experienced during DAY 1-3. Sadness was moderately inversely correlated with body mass loss (r = 0.57) and tiredness was strongly positively correlated (r = 0.94). Sleep quality was unrelated to hydration status. Conclusion: Overall, the expected changes occurred in terms of hydration physiology, but with some unexpected findings in terms of gluco-regulation, blood pressure, and thirst appetites.


2009 ◽  
Vol 44 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Kristin L. Osterberg ◽  
Craig A. Horswill ◽  
Lindsay B. Baker

Abstract Context: Urine specific gravity (USG) has been used to estimate hydration status in athletes on the field, with increasing levels of hypohydration indicated by higher USG measurements (eg, greater than 1.020). Whether initial hydration status based on a urine measure is related to subsequent drinking response during exercise or athletic competition is unclear. Objective: To determine the relationship between pregame USG and the volume of fluid consumed by players in a professional basketball game. Design: Cross-sectional study. Setting: Basketball players were monitored during Summer League competition. Patients or Other Participants: Players (n  =  29) from 5 teams of the National Basketball Association agreed to participate. Main Outcome Measure(s): Pregame USG was measured for each player on 2 occasions. Athletes were given ad libitum access to fluid during each game and were unaware of the purpose of the study. Volume of fluid intake was measured for each player. To assess sweat loss, athletes were weighed in shorts before and after each game. Results: Sweat loss ranged from 1.0 to 4.6 L, with a mean sweat loss of 2.2 ± 0.8 L. Fluid intake ranged from 0.1 to 2.9 L, with a mean fluid intake of 1.0 ± 0.6 L. Pregame USG was greater than 1.020 in 52% of the urine samples collected and was not correlated with fluid volume consumed during either of the games (r  =  0.15, P  =  .48, and r  =  0.15, P  =  .52, respectively). Conclusions: Approximately half of the players began the games in a hypohydrated state, as indicated by USG. Fluid intake during the game did not compensate for poor hydration status before competition. Furthermore, sweat losses in these players during games were substantial (greater than 2 L in approximately 20 minutes of playing time). Therefore, both pregame and during-game hydration strategies, such as beverage availability and player education, should be emphasized.


2008 ◽  
Vol 18 (5) ◽  
pp. 457-472 ◽  
Author(s):  
Ronald J. Maughan ◽  
Susan M. Shirreffs

Athletes are encouraged to begin exercise well hydrated and to consume sufficient amounts of appropriate fluids during exercise to limit water and salt deficits. Available evidence suggests that many athletes begin exercise already dehydrated to some degree, and although most fail to drink enough to match sweat losses, some drink too much and a few develop hyponatremia. Some simple advice can help athletes assess their hydration status and develop a personalized hydration strategy that takes account of exercise, environment, and individual needs. Preexercise hydration status can be assessed from urine frequency and volume, with additional information from urine color, specific gravity, or osmolality. Change in hydration during exercise can be estimated from the change in body mass that occurs during a bout of exercise. Sweat rate can be estimated if fluid intake and urinary losses are also measured. Sweat salt losses can be determined by collection and analysis of sweat samples, but athletes losing large amounts of salt are likely to be aware of the taste of salt in sweat and the development of salt crusts on skin and clothing where sweat has evaporated. An appropriate drinking strategy will take account of preexercise hydration status and of fluid, electrolyte, and substrate needs before, during, and after a period of exercise. Strategies will vary greatly between individuals and will also be influenced by environmental conditions, competition regulations, and other factors.


2017 ◽  
Vol 27 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Mary Caitlin Stevenson Wilcoxson ◽  
Samantha Louise Johnson ◽  
Veronika Pribyslavska ◽  
James Mathew Green ◽  
Eric Kyle O’Neal

Runners are unlikely to consume fluid during training bouts increasing the importance of recovery rehydration efforts. This study assessed urine specific gravity (USG) responses following runs in the heat with different recovery fluid intake volumes. Thirteen male runners completed 3 evening running sessions resulting in approximately 2,200 ± 300 ml of sweat loss (3.1 ± 0.4% body mass) followed by a standardized dinner and breakfast. Beverage fluid intake (pre/postbreakfast) equaled 1,565/2,093 ml (low; L), 2,065/2,593 ml (moderate; M) and 2,565/3,356 mL (high; H). Voids were collected in separate containers. Increased urine output resulted in no differences (p > .05) in absolute mean fluid retention for waking or first postbreakfast voids. Night void averages excluding the first void postrun (1.025 ± 0.008; 1.013 ± 0.008; 1.006 ± 0.003), first morning (1.024 ± 0.004; 1.015 ± 0.005; 1.014 ± 0.005), and postbreakfast (1.022 ± 0.007; 1.014 ± 0.007; 1.008 ± 0.003) USG were higher (p < .05) for L versus M and H respectively and more clearly differentiated fluid intake volume between L and M than color or thirst sensation. Waking (r = -0.66) and postbreakfast (r = -0.71) USG were both significantly correlated (p < .001) with fluid replacement percentage, but not absolute fluid retention. Fluid intake M was reported as most similar to normal consumption (5.6 ± 1.0 on 0–10 scale) after breakfast and equaled 122 ± 16% of sweat losses. Retention data suggests consumption above this level is not warranted or actually practiced by most runners drinking ad libitum, but that periodic prerun USG assessment may be useful for coaches to detect runners that habitually consume low levels of fluids between training bouts in warm seasons.


2021 ◽  
Vol 79 (1) ◽  
pp. 55-63
Author(s):  
Dirk Aerenhouts ◽  
Laurent Chapelle ◽  
Peter Clarys ◽  
Evert Zinzen

Abstract Maintaining euhydration is important for optimal health, performance and recovery, but can be challenging for alpine skiers when training in a relatively cold but dry environment. This study aimed to evaluate hydration status, fluid loss and fluid intake in adolescent alpine skiers during a training camp. Twelve athletes aged 14.3 ± 0.9 years volunteered to participate in the study. Athletes resided at an altitude of 1600 m and trained between 1614 and 2164 m. During eight consecutive days, urine specific gravity was measured before each morning training session using a refractometer. Changes in body weight representing fluid loss and ad libitum fluid intake during each morning training session were assessed using a precision scale. Mean pre-training urine specific gravity remained stable throughout the training camp. Individual values ranged between 1.010 and 1.028 g/cm3with 50 to 83% of athletes in a hypohydrated state (urine specific gravity ≥ 1.020 g/cm3). Mean training induced fluid loss remained stable throughout the training camp (range -420 to -587 g) with individual losses up to 1197 g (-3.5%). Fluid intake was significantly lower than fluid loss during each training session. To conclude, urine specific gravity values before training indicated insufficient daily fluid intake in more than half of the athletes. Furthermore, fluid intake during training in adolescent alpine skiers was suboptimal even when drinks were provided ad libitum. Coaches and athletes should be encouraged to carefully monitor hydration status and to ensure that alpine skiers drink sufficiently during and in between training sessions.


Sign in / Sign up

Export Citation Format

Share Document