Development of Individual Hydration Strategies for Athletes

2008 ◽  
Vol 18 (5) ◽  
pp. 457-472 ◽  
Author(s):  
Ronald J. Maughan ◽  
Susan M. Shirreffs

Athletes are encouraged to begin exercise well hydrated and to consume sufficient amounts of appropriate fluids during exercise to limit water and salt deficits. Available evidence suggests that many athletes begin exercise already dehydrated to some degree, and although most fail to drink enough to match sweat losses, some drink too much and a few develop hyponatremia. Some simple advice can help athletes assess their hydration status and develop a personalized hydration strategy that takes account of exercise, environment, and individual needs. Preexercise hydration status can be assessed from urine frequency and volume, with additional information from urine color, specific gravity, or osmolality. Change in hydration during exercise can be estimated from the change in body mass that occurs during a bout of exercise. Sweat rate can be estimated if fluid intake and urinary losses are also measured. Sweat salt losses can be determined by collection and analysis of sweat samples, but athletes losing large amounts of salt are likely to be aware of the taste of salt in sweat and the development of salt crusts on skin and clothing where sweat has evaporated. An appropriate drinking strategy will take account of preexercise hydration status and of fluid, electrolyte, and substrate needs before, during, and after a period of exercise. Strategies will vary greatly between individuals and will also be influenced by environmental conditions, competition regulations, and other factors.

2008 ◽  
Vol 33 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Matthew S. Palmer ◽  
Lawrence L. Spriet

Previous research in many sports suggests that losing ~1%–2% body mass through sweating impairs athletic performance. Elite-level hockey involves high-intensity bursts of skating, arena temperatures are >10 °C, and players wear protective equipment, all of which promote sweating. This study examined the pre-practice hydration, on-ice fluid intake, and sweat and sodium losses of 44 candidates for Canada’s junior men’s hockey team (mean ± SE age, 18.4 ± 0.1 y; height, 184.8 ± 0.9 cm; mass, 89.9 ± 1.1 kg). Players were studied in groups of 10–12 during 4 intense 1 h practices (13.9 °C, 66% relative humidity) on 1 day. Hydration status was estimated by measuring urine specific gravity (USG). Sweat rate was calculated from body mass changes and fluid intake. Sweat sodium concentration ([Na]) was analyzed in forehead sweat patch samples and used with sweat rate to estimate sodium loss. Over 50% of players began practice mildly hypohydrated (USG > 1.020). Sweat rate during practice was 1.8 ± 0.1 L·h–1 and players replaced 58% (1.0 ± 0.1 L·h–1) of the sweat lost. Body mass loss averaged 0.8% ± 0.1%, but 1/3 of players lost more than 1%. Sweat [Na] was 54.2 ± 2.4 mmol·L–1 and sodium loss averaged 2.26 ± 0.17 g during practice. Players drank only water during practice and replaced no sodium. In summary, elite junior hockey players incurred large sweat and sodium losses during an intense practice, but 2/3 of players drank enough to minimize body mass loss. However, 1/3 of players lost more than 1% body mass despite ready access to fluid and numerous drinking opportunities from the coaches.


2021 ◽  
pp. 194173812110384
Author(s):  
Yasuki Sekiguchi ◽  
Courteney L. Benjamin ◽  
Cody R. Butler ◽  
Margaret C. Morrissey ◽  
Erica M. Filep ◽  
...  

Background: A Venn diagram consisting of percentage body mass loss, urine color, and thirst perception (weight, urine, thirst [WUT]) has been suggested as a practical method to assess hydration status. However, no study to date has examined relationships between WUT and urine hydration indices. Thus, the purpose of this study was to investigate relationships between urine specific gravity, urine osmolality, and the WUT criteria. Hypothesis: Urine specific gravity and urine osmolality indicate hypohydration when the WUT criteria demonstrate hypohydration (≥2 markers). Study Design: Laboratory cohort study. Level of Evidence: Level 3. Methods: A total of 22 women (mean ± SD; age, 20 ± 1 years; mass, 65.4 ± 12.6 kg) and 21 men (age, 21 ± 1 years; body mass, 78.7 ± 14.6 kg) participated in this study. First morning body mass, urine color, urine specific gravity, urine osmolality, and thirst level were collected for 10 consecutive days in a free-living situation. Body mass loss >1%, urine color >5, and thirst level ≥5 were used as the dehydration thresholds. The number of markers that indicated dehydration levels were counted and categorized into either 3, 2, 1, or 0 WUT markers that indicated dehydration. One-way analysis of variance with Tukey pairwise comparisons was used to assess the differences in urine specific gravity and urine osmolality between the different number of WUT markers. Results: Urine specific gravity in 3 WUT markers (mean ± SD [effect size], 1.021 ± 0.007 [0.57]; P = 0.025) and 2 WUT markers (1.019 ± 0.010 [0.31]; P = 0.026) was significantly higher than 1 WUT marker (1.016 ± 0.009). Urine mosmolality in 2 WUT markers (705 ± 253 mOsmol [0.43]; P = 0.018) was significantly higher than 1 WUT (597 ± 253 mOsmol). Meeting at least 2 WUT markers resulted in sensitivities of 0.652 (2 WUT criteria met) and 0.933 (3 WUT criteria met) to detect urine osmolality >700 mOsmol. Conclusion: These results suggest that when 3 WUT markers are met, urine specific gravity and urine osmolality were greater than euhydration cutoff points. The WUT criterion is a useful tool to use in field settings to assess hydration status when first morning urine sample was used. Clinical Relevance: Athletes, coaches, sports scientists, and medical professionals can use WUT criteria to monitor dehydration with reduced cost and time.


2015 ◽  
Vol 72 (12) ◽  
pp. 1063-1068 ◽  
Author(s):  
Milica Vukasinovic-Vesic ◽  
Marija Andjelkovic ◽  
Tamara Stojmenovic ◽  
Nenad Dikic ◽  
Marija Kostic ◽  
...  

Background/Aim. Previous investigations in many sports indicated that continued exercise, especially in hot environments, can cause high sweat rate and huge water and electrolyte losses, thus impairing the performance of athletes. Most these studies were conducted during training sessions, but rarely during an official competition. Therefore, the aim of our study was to determine pre- and post-competition hydration, fluid intake and sweat loss of young elite basketball players during the FIBA Europe U20 Championship. Methods. The study included 96 basketball male players, (19 ? 0.79 years) of eight national teams. Ambient temperature was 30 ? 2?C, humidity 55 ? 4% and the mean playing time in game 18.8 ? 10.5 min. The following parameters related to hydration status were measured: fluid intake, urine output, sweat rate, percent of dehydration, urine parameters (specific gravity, color and osmolarity), body mass and body surface area. Results. We found that the mean fluid intake was 1.79 ? 0.8 L/h, sweat rate 2.7 ? 0.9 L/h, urine output 55 ? 61 mL and the percentage of dehydration 0.99 ? 0.7%. According to urine osmolarity more than 75% of players were dehydrated before the game and the process continued during the game. The difference in body mass (0.9 ? 0.7 kg) before and after the game was statistically significant. There were statistically significant correlations between the sweat rate and fluid intake, urine osmolarity, body mass loss, body surface area and percentage of dehydration. Fluid intake correlated with the percentage of dehydration, body mass loss, urine specific gravity and urine color. The sweat rate, which varied between the teams, was the highest for centers when this parameter was calculated on the effective time in game. Conclusion. Most of the athletes start competition dehydrated, fail to compensate sweat loss during the game and continue to be dehydrated, regardless what kind of drink was used. These results suggest that hydration strategies must be carefully taken into account, not only by the players, but also by the coaches and the team doctors.


Author(s):  
Eric Kyle O’Neal ◽  
Samantha Louise Johnson ◽  
Brett Alan Davis ◽  
Veronika Pribyslavska ◽  
Mary Caitlin Stevenson-Wilcoxson

The legitimacy of urine specific gravity (USG) as a stand-alone measure to detect hydration status has recently been challenged. As an alternative to hydration status, the purpose of this study was to determine the diagnostic capability of using the traditional USG marker of >1.020 to detect insufficient recovery fluid consumption with consideration for moderate versus high sweat losses (2.00–2.99 or >3% body mass, respectively). Adequate recovery fluid intake was operationally defined as ≥100% beverage fluid intake plus food water from one or two meals and a snack. Runners (n = 59) provided 132 samples from five previous investigations in which USG was assessed 10–14 hr after 60–90 min runs in temperate-to-hot environments. Samples were collected after a meal (n = 58) and after waking (n = 74). When sweat losses exceeded 3% body mass (n = 60), the relationship between fluid replacement percentage and USG increased from r = −.55 to −.70. Correct diagnostic decision improved from 66.6 to 83.3%, and receiver operating characteristic area under the curve increased the diagnostic accuracy score from 0.76 to approaching excellent (0.86). Artifacts of significant prerun hyperhydration (eight of 15 samples has USG <1.005) may explain false positive diagnoses, while almost all (84%) cases of false positives were found when sweat losses were <3.0% of body mass. Evidence from this study suggests that euhydrated runners experiencing significant sweat losses who fail to reach adequate recovery fluid intake levels can be identified by USG irrespective of acute meal and fluid intake ∼12-hr postrun.


1998 ◽  
Vol 8 (4) ◽  
pp. 345-355 ◽  
Author(s):  
Lawrence E. Armstrong ◽  
Jorge A. Herrera Soto ◽  
Frank T. Hacker ◽  
Douglas J. Casa ◽  
Stavros A. Kavouras ◽  
...  

This investigation evaluated the validity and sensitivity of urine color (Ucol), specific gravity (Usg), and osmolality (Uosm) as indices of hydration status, by comparing them to changes in body water. Nine highly trained males underwent a 42-hr protocol involving dehydration to 3.7% of body mass (Day 1, −2.64 kg), cycling to exhaustion (Day 2, −5.2% of body mass, −3.68 kg), and oral rehydration for 21 hr. The ranges of mean (across time) blood and urine values were Ucol, 1-7; Usg, 1.004-1.029; U08m, 117-1,081 mOsm • kg−1; and plasma osmolality (Posm), 280-298 mOsm ⋅ kg−1. Urine color tracked changes in body water as effectively as (or better than) Uosm, Usg, urine volume, Posm, plasma sodium, and plasma total protein. We concluded that (a) Ucol, Uosm, and Usg are valid indices of hydration status, and (b) marked dehydration, exercise, and rehydration had little effect on the validity and sensitivity of these indices.


Author(s):  
Lawrence E. Armstrong ◽  
Amy C. Pumerantz ◽  
Kelly A. Fiala ◽  
Melissa W. Roti ◽  
Stavros A. Kavouras ◽  
...  

It is difficult to describe hydration status and hydration extremes because fluid intakes and excretion patterns of free-living individuals are poorly documented and regulation of human water balance is complex and dynamic. This investigation provided reference values for euhydration (i.e., body mass, daily fluid intake, serum osmolality; M ± SD); it also compared urinary indices in initial morning samples and 24-hr collections. Five observations of 59 healthy, active men (age 22 ± 3 yr, body mass 75.1 ± 7.9 kg) occurred during a 12-d period. Participants maintained detailed records of daily food and fluid intake and exercise. Results indicated that the mean total fluid intake in beverages, pure water, and solid foods was >2.1 L/24 hr (range 1.382–3.261, 95% confidence interval 0.970–3.778 L/24 hr); mean urine volume was >1.3 L/24 hr (0.875–2.250 and 0.675–3.000 L/24 hr); mean urine specific gravity was >1.018 (1.011–1.027 and 1.009–1.030); and mean urine color was ≥4 (4–6 and 2–7). However, these men rarely (0–2% of measurements) achieved a urine specific gravity below 1.010 or color of 1. The first morning urine sample was more concentrated than the 24-h urine collection, likely because fluids were not consumed overnight. Furthermore, urine specific gravity and osmolality were strongly correlated (r2 = .81–.91, p < .001) in both morning and 24-hr collections. These findings provide euhydration reference values and hydration extremes for 7 commonly used indices in free-living, healthy, active men who were not exercising in a hot environment or training strenuously.


2015 ◽  
Vol 119 (2) ◽  
pp. 110-115 ◽  
Author(s):  
Robert W. Kenefick ◽  
K. R. Heavens ◽  
W. E. Dennis ◽  
E. M. Caruso ◽  
K. I. Guerriere ◽  
...  

Changes in body water elicit reflex adjustments at the kidney, thus maintaining fluid volume homeostasis. These renal adjustments change the concentration and color of urine, variables that can, in turn, be used as biomarkers of hydration status. It has been suggested that vitamin supplementation alters urine color; it is unclear whether any such alteration would confound hydration assessment via colorimetric evaluation. We tested the hypothesis that overnight vitamin B2 and/or B12 supplementation alters urine color as a marker of hydration status. Thirty healthy volunteers were monitored during a 3-day euhydrated baseline, confirmed via first morning nude body mass, urine specific gravity, and urine osmolality. Volunteers then randomly received B2 ( n = 10), B12 ( n = 10), or B2 + B12 ( n = 10) at ∼200 × recommended dietary allowance. Euhydration was verified on trial days (two of the following: body mass ± 1.0% of the mean of visits 1–3, urine specific gravity < 1.02, urine osmolality < 700 mmol/kg). Vitamin purity and urinary B2 concentration ([B2]) and [B12] were quantified via ultraperformance liquid chromatography. Two independent observers assessed urine color using an eight-point standardized color chart. Following supplementation, urinary [B2] was elevated; however, urine color was not different between nonsupplemented and supplemented trials. For example, in the B2 trial, urinary [B2] increased from 8.6 × 104 ± 7.7 × 104 to 5.7 × 106 ± 5.3 × 106 nmol/l ( P < 0.05), and urine color went from 4 ± 1 to 5 ± 1 ( P > 0.05). Both conditions met the euhydrated color classification. We conclude that a large overnight dose of vitamins B2 and B12 does not confound assessment of euhydrated status via urine color.


Author(s):  
Isabella S. Abbasi ◽  
Rebecca M. Lopez ◽  
Yi-Tzu Kuo ◽  
B. Sue Shapiro

Context: Research focusing on improving hydration status and knowledge in indoor female athletes is limited. Previous research has demonstrated hydration education is an optimal tool for improving the hydration status of athletes. Objective: To assess hydration status and fluid intake of collegiate female indoor athletes before and after a one-time educational intervention. Design: Controlled field study Setting: Collegiate women's volleyball and basketball practices Participants: Twenty-five female collegiate volleyball and basketball athletes (21±1years; 173.5±8.7cm, 72.1±10.0kg) were assessed during six days of practices. Intervention(s): Participants' hydration status and habits were monitored for 3 practice days before undergoing a hydration educational intervention. Post-intervention, participants were observed for 3 more practice days. Main Outcome Measures: Change in body mass (BM), fluid consumed, urine specific gravity (USG), urine color (Ucol), and sweat rate were recorded for 6 practice days. Participants completed a hydration knowledge questionnaire (HAQ) before and after the intervention to assess changes. Results: Three-day mean USG and Ucol were considered euhydrated pre-practice (USG 1.015±0.006, Ucol 4±1) and remained euhydrated post-practice (USG 1.019±0.005, Ucol 5±2) during the pre-intervention period. Decreases in pre-practice Ucol (p&lt;.01) and increases (p&lt;.01) in hydration knowledge were found post-intervention. Basketball athletes had greater BM losses from pre- to post-practice compared to volleyball (p=.000). Significant increases were found overall when comparing pre- and post-practice measures of USG and Ucol in pre-intervention period (p=.000, p=.001) and post-intervention period (p=.001, p=.000). No correlation was found between hydration knowledge and physiological indices of hydration and fluid intake. Conclusions: Overall, female collegiate indoor athletes were hydrated and knowledgeable of hydration. Variability in findings indicates further research is needed with this sport; clinically, attention should be given to individualized needs of each athlete. More research is needed to determine if a one-time educational intervention may be an effective tool for improving overall hydration in this population.


2020 ◽  
Vol 319 (5) ◽  
pp. R560-R565
Author(s):  
Gabrielle E. W. Giersch ◽  
Abigail T. Colburn ◽  
Margaret C. Morrissey ◽  
Cody R. Butler ◽  
Michaela L. Pruchnicki ◽  
...  

Reproductive hormones have significant nonreproductive physiological effects, including altering fluid regulation. Our purpose was to explore the impact of sex and menstrual cycle (MC) phase on volume-regulatory responses to 24-h fluid restriction (24-h FR). Participants (men: n = 12, 20 ± 2 yr; women: n = 10, 20 ± 1 yr) were assigned two randomized and counterbalanced fluid prescriptions [Euhy: euhydrated, urine specific gravity (USG) < 1.020; Dehy: 24-h FR, USG > 1.020]. Men completed both (MEuhy, MDehy), while women completed both in the late-follicular ( days 10–13; FDehy, FEuhy) and midluteal ( days 18–22; LDehy, LEuhy) phases. We measured body mass, plasma and urine osmolality (Posm, Uosm), urine specific gravity (USG), urine color (Ucol), and serum copeptin; 24-h FR yielded mild dehydration without influence of sex or MC ( P > 0.05). Copeptin increased in men following Dehy (pre: 8.2 ± 5.2, post: 15.8 ± 12.6, P = 0.04) but not in women (FDehy pre: 4.3 ± 1.6, post: 10.5 ± 6.9, P = 0.06; LDehy pre: 5.6 ± 3.5, post: 10.4 ± 6.2, P = 0.16). In FDehy, Posm increased following FR (pre: 288 ± 2, post: 292 ± 1, P = 0.03) but not in men (pre: 292 ± 3, post: 293 ± 2, P = 0.46). No MC differences were observed between body mass loss, Posm, Uosm, USG, and copeptin ( P > 0.05). These results suggest that volume-regulatory responses to 24-h FR were present in men but not in women, without apparent effects of the menstrual cycle.


2020 ◽  
Vol 15 (2) ◽  
pp. 213-221
Author(s):  
Oliver R. Barley ◽  
Dale W. Chapman ◽  
Georgios Mavropalias ◽  
Chris R. Abbiss

Purpose: To examine the influence of fluid intake on heat acclimation and the subsequent effects on exercise performance following acute hypohydration. Methods: Participants were randomly assigned to 1 of 2 groups, either able to consume water ad libitum (n = 10; age 23 [3] y, height 1.81 [0.09] m, body mass 87 [13] kg; HAW) or not allowed fluid (n = 10; age 26 [5] y, height 1.76 [0.05] m, body mass 79 [10] kg; HANW) throughout 12 × 1.5-h passive heat-acclimation sessions. Experimental trials were completed on 2 occasions before (2 baseline trials) and 1 following the heat-acclimation sessions. These sessions involved 3 h of passive heating (45°C, 38% relative humidity) to induce hypohydration followed by 3 h of ad libitum food and fluid intake after which participants performed a repeat sled-push test to assess physical performance. Urine and blood samples were collected before, immediately, and 3 h following hypohydration to assess hydration status. Mood was also assessed at the same time points. Results: No meaningful differences in physiological or performance variables were observed between HANW and HAW at any time point. Using pooled data, mean sprint speed was significantly (P < .001) faster following heat acclimation (4.6 [0.7] s compared with 5.1 [0.8] s). Furthermore, heat acclimation appeared to improve mood following hypohydration. Conclusions: Results suggest that passive heat-acclimation protocols may be effective at improving short-duration repeat-effort performance following acute hypohydration.


Sign in / Sign up

Export Citation Format

Share Document