scholarly journals From Heart-Rate Data to Training Quantification: A Comparison of 3 Methods of Training-Intensity Analysis

2014 ◽  
Vol 9 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Øystein Sylta ◽  
Espen Tønnessen ◽  
Stephen Seiler

Purpose:The authors directly compared 3 frequently used methods of heart-rate-based training-intensity-distribution (TID) quantification in a large sample of training sessions performed by elite endurance athletes.Methods:Twenty-nine elite cross-country skiers (16 male, 13 female; 25 ± 4 y; 70 ± 11 kg; 76 ± 7 mL · min−1 · kg−1 VO2max) conducted 570 training sessions during a ~14-d altitude-training camp. Three analysis methods were used: time in zone (TIZ), session goal (SG), and a hybrid session-goal/time-in-zone (SG/TIZ) approach. The proportion of training in zone 1, zone 2, and zone 3 was quantified using total training time or frequency of sessions, and simple conversion factors across different methods were calculated.Results:Comparing the TIZ and SG/TIZ methods, 96.1% and 95.5%, respectively, of total training time was spent in zone 1 (P < .001), with 2.9%/3.6% and 1.1%/0.8% in zones 2/3 (P < .001). Using SG, this corresponded to 86.6% zone 1 and 11.1%/2.4% zone 2/3 sessions. Estimated conversion factors from TIZ or SG/TIZ to SG and vice versa were 0.9/1.1, respectively, in the low-intensity training range (zone 1) and 3.0/0.33 in the high-intensity training range (zones 2 and 3).Conclusions:This study provides a direct comparison and practical conversion factors across studies employing different methods of TID quantification associated with the most common heart-rate-based analysis methods.

2014 ◽  
Vol 9 (6) ◽  
pp. 1026-1032 ◽  
Author(s):  
Daniel J. Plews ◽  
Paul B. Laursen ◽  
Andrew E. Kilding ◽  
Martin Buchheit

Purpose:Elite endurance athletes may train in a polarized fashion, such that their training-intensity distribution preserves autonomic balance. However, field data supporting this are limited.Methods:The authors examined the relationship between heart-rate variability and training-intensity distribution in 9 elite rowers during the 26-wk build-up to the 2012 Olympic Games (2 won gold and 2 won bronze medals). Weekly averaged log-transformed square root of the mean sum of the squared differences between R-R intervals (Ln rMSSD) was examined, with respect to changes in total training time (TTT) and training time below the first lactate threshold (>LT1), above the second lactate threshold (LT2), and between LT1 and LT2 (LT1–LT2).Results:After substantial increases in training time in a particular training zone or load, standardized changes in Ln rMSSD were +0.13 (unclear) for TTT, +0.20 (51% chance increase) for time >LT1, –0.02 (trivial) for time LT1–LT2, and –0.20 (53% chance decrease) for time >LT2. Correlations (±90% confidence limits) for Ln rMSSD were small vs TTT (r = .37 ± .80), moderate vs time >LT1 (r = .43 ± .10), unclear vs LT1–LT2 (r = .01 ± .17), and small vs >LT2 (r = –.22 ± .50).Conclusion:These data provide supportive rationale for the polarized model of training, showing that training phases with increased time spent at high intensity suppress parasympathetic activity, while low-intensity training preserves and increases it. As such, periodized low-intensity training may be beneficial for optimal training programming.


Proceedings ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 23
Author(s):  
Vasilios Kalapotharakos ◽  
Dimitrios Serenidis ◽  
Savvas Tokmakidis

Aim: Soccer is characterized as an intense intermittent team sport. Heart rate (HR) is used to monitor the players’ training response, as well as to quantify microcycle and mesocycle training intensity during preseason and in-season periods. The purpose of the present study was to quantify the preseason training intensity distribution in elite soccer players and then examine the relationship between HR distribution and changes in aerobic fitness. Material & Method: Sixteen elite professional soccer players (age, 26.8 ± 3.8 years; weight, 77.8 ± 7.7 kg; height, 1.79 ± 0.06 m; mean ± SD) participated in the study. Aerobic fitness was evaluated with VO2max, running velocity at VO2max (v-VO2max) during a laboratory incremental aerobic test and with the distance completed during an interval shuttle run test (ISRT), before and after preseason. HR of each player was measured using a short-range telemetry HR transmitter strap at 5-s intervals during all training sessions of the preseason. The absolute (min) and relative (%) time spent in high-intensity HR zone (90–100% of HRmax) during the preseason period was calculated for each player. Results: VO2max and distances completed during ISRT improved significantly (p < 0.05) by 3.3 ± 2.1% and 29 ± 16%, respectively. The time (%) players spent in high-intensity training was significantly correlated (p < 0.01) with the changes (%) in distance completed during ISRT. Conclusions: These results provide useful information about the HR quantification during preseason in elite soccer players. Additionally, coaches have to take into consideration the time soccer players spend in high-intensity training for optimal endurance responses when planning and implementing the preseason training period.


2016 ◽  
Vol 11 (6) ◽  
pp. 880-886 ◽  
Author(s):  
Alexandre Moreira ◽  
Rodrigo V Gomes ◽  
Caroline D Capitani ◽  
Charles R Lopes ◽  
Audrei R Santos ◽  
...  

The aim of this study was to describe the training intensity distribution of elite young tennis players, based on the session rating of perceived exertion and heart rate methods. Twelve professional tennis players participated in this study. Heart rate and session rating of perceived exertion were collected in 384 tennis training sessions, 23 simulated matches, and 17 official matches. The total training time spent in the heart rate zone-1 (52.00%) and zone-2 (37.10%) was greater than the time spent in zone-3 (10.90%) during the 5-week training period ( p < 0.05). Similarly, the total training time spent in the session rating of perceived exertion zone-1 (42.00%) and zone-2 (47.50%) was also greater than the time in zone-3 (10.50%) ( p < 0.05). The data of the present study suggest that the majority of the training sessions of these young tennis players were performed at low-to-moderate intensity zone and, therefore, under the intensity performed during actual tennis match play.


2009 ◽  
Vol 41 ◽  
pp. 223
Author(s):  
Robert P. Lamberts ◽  
Jeroen Swart ◽  
Timothy D. Noakes ◽  
Michael I. Lambert

2017 ◽  
Vol 37 (5) ◽  
pp. 636-642
Author(s):  
Lin Shihang ◽  
Wichai Eungpinithpong ◽  
Amonrat Jumnainsong ◽  
Somchai Rattanathongkom

2008 ◽  
Vol 105 (5) ◽  
pp. 705-713 ◽  
Author(s):  
Robert P. Lamberts ◽  
Jeroen Swart ◽  
Timothy D. Noakes ◽  
Michael I. Lambert

Author(s):  
Matias Yoma ◽  
Lee Herrington ◽  
Tanya Anne Mackenzie ◽  
Timothy Alejandro Almond

Context Shoulder pain is the main cause of missed or modified training in competitive swimmers. Shoulder musculoskeletal maladaptations occur to some extent as a consequence of training loads during swimming that may increase the risk of shoulder injury. Further evidence is needed to understand the training intensities at which these maladaptations occur. Objective To determine the acute effect of training intensity on the shoulder musculoskeletal physical qualities associated with shoulder injury in competitive swimmers. Design Cross-sectional study. Setting Indoor swimming pool. Patients or Other Participants Sixteen asymptomatic national- and regional-level swimmers (7 females, 9 males; age = 14.6 ± 3.9 years, height = 160.5 ± 12.7 cm, mass = 55.3 ± 12.5 kg). Main Outcome Measure(s) Bilateral active shoulder-rotation range of motion (ROM), joint position sense, latissimus dorsi length, combined elevation test, and shoulder-rotation isometric peak torque and handgrip peak force normalized to body weight were measured before and immediately after low- and high-intensity swim-training sessions. The intensity of the sessions was determined by the distance swum over or at the pace threshold and confirmed by the swimmer's rating of perceived exertion. Results After the high-intensity training session, shoulder external-rotation ROM (dominant side: P &lt; .001, change = −7.8°; d = 1.10; nondominant side: P = .002, change = −6.5°, d = 1.02), internal-rotator isometric peak torque (dominant side: P &lt; .001, change = −11.4%, d = 0.42; nondominant side: P = .03, change = −6.6%, d = 0.20), and external-rotator isometric peak torque (dominant side: P = .004, change = −8.7%, d = 0.27; nondominant side: P = .02, change = −7.6%, d = 0.25) were reduced. No changes were found in any of the outcome measures after the low-intensity session. Conclusions Shoulder active external-rotation ROM and rotation isometric peak torque were decreased immediately after a high-intensity training session, possibly increasing the risk of injury during subsequent training. Monitoring these variables may help practitioners adjust and manage training loads to decrease the risk of shoulder injury.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Fan Zhao ◽  
Yong Liu ◽  
Yi Zhou

Objective Using heart rate wireless system to continuously track the morning pulse of male freestyle wrestlers after different training loads. The basic value of individual morning pulse and the interval of variation of individual morning pulse after class were established for the elite players. Methods The paper is based on 6 elite male freestyle wrestlers, we continuously test morning pulse after different training load and recovery period,then fill in fatigue questionnaire.We use Spss statistical software to carry out statistical treatment of the experimental data, and analysis the descriptive, difference, correlation and reliability of data. Results Men freestyle athletes base morning pulse at 43-47 / min. After high intensity, the morning pulse increased by about 6%-11%, and the range of change was basically consistent with the change of subjective feeling and heart rate in training class. The average (X) and standard deviation (SD) of the morning pulse in high intensity training class were different from each other. Combined with the results of training diary and fatigue questionnaire, the players appeared body and psychological fatigue and complained that they felt very tired. The X-SD~X SD interval can be used as the early morning pulse range for evaluating athletes' fatigue after high intensity class. The morning pulse and SpO2 was associated with exhaustion of emotional energy, negative evaluation of exercise, decreased sense of achievement, and no significant correlation with heart rate fatigue. However, these three dimensions were significantly related to mental fatigue, r>0.934. Conclusions After high intensity, the morning pulse increased significantly compared with the basic value of morning pulse. Combined with questionnaire survey and training diary feedback, the subjective feeling of body appeared fatigue after high intensity class, which was also consistent with the change of morning pulse. Can be based on individual morning pulse changes to learn about the high intensity class fatigue situation.The morning pulse after high intensity can reach the fatigue interval, which indicates that the training intensity can stimulate the body greatly, and the gradual recovery of the morning pulse can be regarded as the state of whether or not there is overfatigue. If maintain oneself high level all the time, need to adjust training intensity in time. If you can gradually recover close to the basic value, the large-intensity training class can be well adapted to the body.  


2018 ◽  
Vol 39 (10) ◽  
pp. 773-781 ◽  
Author(s):  
Laurent Schmitt ◽  
Jacques Regnard ◽  
Nicolas Coulmy ◽  
Gregoire Millet

AbstractWe aimed to analyse the relationship between training load/intensity and different heart rate variability (HRV) fatigue patterns in 57 elite Nordic-skiers. 1063 HRV tests were performed during 5 years. R-R intervals were recorded in resting supine (SU) and standing (ST) positions. Heart rate, low (LF), high (HF) frequency powers of HRV were determined. Training volume, training load (TL, a.u.) according to ventilatory threshold 1 (VT1) and VT2 were measured in zones I≤VT1; VT1<II≤VT2; III>VT2, IV for strength. TL was performed at 81.6±3.5% in zone I, 0.9±0.9% in zone II, 5.0±3.6% in zone III, 11.6±6.3% in zone IV. 172 HRV tests matched a fatigue state and four HRV fatigue patterns (F) were statistically characterized as F(HF-LF-)SU_ST for 121 tests, F(LF+SULF-ST) for 18 tests, F(HF-SUHF+ST) for 26 tests and F(HF+SU) for 7 tests. The occurrence of fatigue states increased substantially with the part of altitude training time (r2=0.52, p<0.001). This study evidenced that there is no causal relationship between training load/intensity and HRV fatigue patterns. Four fatigue-shifted HRV patterns were sorted. Altitude training periods appeared critical as they are likely to increase the overreaching risks.


2019 ◽  
Vol 14 (8) ◽  
pp. 1151-1156
Author(s):  
Jan G. Bourgois ◽  
Gil Bourgois ◽  
Jan Boone

Training-intensity distribution (TID), or the intensity of training and its distribution over time, has been considered an important determinant of the outcome of a training program in elite endurance athletes. The polarized and pyramidal TID, both characterized by a high amount of low-intensity training (below the first lactate or ventilatory threshold), but with different contributions of threshold training (between the first and second lactate or ventilatory threshold) and high-intensity training (above the second lactate or ventilatory threshold), have been reported most frequently in elite endurance athletes. However, the choice between these 2 TIDs is not straightforward. This article describes the historical, evolutionary, and physiological perspectives of the success of the polarized and pyramidal TID and proposes determinants that should be taken into account when choosing the most appropriate TID.


Sign in / Sign up

Export Citation Format

Share Document