A Comparative Study Between the Wingate and Force–Velocity Anaerobic Cycling Tests: Effect of Physical Fitness

2016 ◽  
Vol 11 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Hamdi Jaafar ◽  
Majdi Rouis ◽  
Elvis Attiogbé ◽  
Henry Vandewalle ◽  
Tarak Driss

Purpose:To verify the hypothesis that the peak power (PP) of a Wingate test (WT) is an underestimation of maximal power (Pmax) computed from the force–velocity test (FVT), to examine possible fatigue effect on Pmax, and to investigate the effect of load on mean power (MP) and fatigue index (FI) during a WT in trained and recreational men.Methods:Ten recreational (22.9 ± 1.7 y, 1.81 ± 0.06 m, 73.3 ± 10.4 kg) and 10 highly trained subjects (22.7 ± 1.4 y, 1.85 ± 0.05 m, 78.9 ± 6.6 kg) performed 2 WTs with 2 loads (8.7% and 11% of body mass [BM]) and an FVT on the same cycle ergometer, in randomized order.Results:Optimal load was equal to 10% BM in recreational participants. Given the quadratic relationship between load and power, the underestimation of Pmax was lower than 10% for the average values of trained and recreational participants with both loads. However, PP with a load equal to 8.7% BM was a large underestimation (~30%) of Pmax in the most powerful individuals. In addition, PP was not greater than Pmax of FVT for the same load. FI was independent of the load only if it was expressed relative to PP. The optimal load for MP during WT was close to the optimal load for PP.Conclusions:The optimal load for WT performance should be approximately equal to 10% BM in recreational subjects. In powerful subjects, the FVT appears to be more appropriate in assessing maximal power, and loads higher than 11% BM should be verified for the WT.

Author(s):  
João Gabriel Silveira-Rodrigues ◽  
André Maia-Lima ◽  
Pedro Augusto Santos Almeida ◽  
Bárbara Marielle Silva França ◽  
Bruno Teobaldo Campos ◽  
...  

2021 ◽  
Vol 33 (2) ◽  
pp. 65-69
Author(s):  
C. Eric Heidorn ◽  
Brandon J. Dykstra ◽  
Cori A. Conner ◽  
Anthony D. Mahon

Purpose: This study examined the physiological, perceptual, and performance effects of a 6% carbohydrate (CHO) drink during variable-intensity exercise (VIE) and a postexercise test in premenarchal girls. Methods: A total of 10 girls (10.4 [0.7] y) participated in the study. VO2peak was assessed, and the girls were familiarized with VIE and performance during the first visit. The trial order (CHO and placebo) was randomly assigned for subsequent visits. The drinks were given before VIE bouts and 1-minute performance (9 mL/kg total). Two 15-minute bouts of VIE were completed (10 repeated sequences of 20%, 55%, and 95% power at VO2peak and maximal sprints) before a 1-minute performance sprint. Results: The mean power, peak power, heart rate (HR), %HRpeak, and rating of perceived exertion during VIE did not differ between trials. However, the peak power decreased, and the rating of perceived exertion increased from the first to the second bout. During the 1-minute performance, there were no differences between the trial (CHO vs placebo) for HR (190 [9] vs 189 [9] bpm), %HRpeak (97.0% [3.2%] vs 96.6% [3.0%]), rating of perceived exertion (7.8 [2.3] vs 8.1 [1.9]), peak power (238 [70] vs 235 [60] W), fatigue index (54.7% [10.0%] vs 55.9% [12.8%]), or total work (9.4 [2.6] vs 9.4 [2.1] kJ). Conclusion: CHO supplementation did not alter physiological, perceptual, or performance responses during 30 minutes of VIE or postexercise sprint performance in premenarchal girls.


2021 ◽  
Author(s):  
José Afonso ◽  
Hengameh Moradian ◽  
Rasoul Eslami ◽  
Alexandre Martins ◽  
Abdolhossein Parnow

Abstract Introduction: Post-activation potentiation has an influence on short duration and high intensity function. This study aimed to answer this question whether post-activation potentiation protocol in different models has effect on anaerobic performance in women Wushu athletes. Methods: Women elite Taolu Wushu athletes participated in current crossover design study. (i) specific Wushu WU (Wushu WU); (ii) Strength-based WU (StreWU); and (iii) Speed-based WU (SpeWU) were performed by Wushu athletes in three inconsecutive days separated by 48 h. Five minutes after each WU protocols, Running-Based Anaerobic Sprint Test (RAST) was performed. Heart rate, immediately, and blood lactate were measured for 4 times: before WU protocols, immediately after WU protocols, before RAST, immediately after RAST.Results: Data analysis revealed significant differences in 4 time points of lactate levels (p=0.001; d=1.71), although no significant difference among protocols was observed. Values of variables obtained from RAST showed that StreWU had a significant impact on minimum power (p<0.05; d=-0.795) comparing to WushuWU and on fatigue index comparing to SpeWU (p<0.05; d=-0.799). No significant differences were found among the WU protocols for peak power and mean power.Conclusion: All WU protocols had mostly the same effect, and PAP was not very effective. Possibly, the WU protocols generated too much fatigue, due to the short-term rest time. However, longer intervals would likely enter the realm of post-activation performance enhancement, which is distinct from PAP.


2020 ◽  
Vol 15 (1) ◽  
pp. 18-24
Author(s):  
Seiichiro Takei ◽  
Kuniaki Hirayama ◽  
Junichi Okada

Purpose: The optimal load for maximal power output during hang power cleans (HPCs) from a mechanical perspective is the 1-repetition-maximum (1RM) load; however, previous research has reported otherwise. The present study thus aimed to investigate the underlying factors that determine optimal load during HPCs. Methods: Eight competitive Olympic weight lifters performed HPCs at 40%, 60%, 70%, 80%, 90%, 95%, and 100% of their 1RM while the ground-reaction force and bar/body kinematics were simultaneously recorded. The success criterion during HPC was set above parallel squat at the receiving position. Results: Both peak power and relative peak power were maximized at 80% 1RM (3975.7 [439.1] W, 50.4 [6.6] W/kg, respectively). Peak force, force at peak power, and relative values tended to increase with heavier loads (P < .001), while peak system velocity and system velocity at peak power decreased significantly above 80% 1RM (P = .005 and .011, respectively). There were also significant decreases in peak bar velocity (P < .001) and bar displacement (P < .001) toward heavier loads. There was a strong positive correlation between peak bar velocity and bar displacement in 7 of 8 subjects (r > .90, P < .01). The knee joint angle at the receiving position fell below the quarter-squat position above 70% 1RM. Conclusions: Submaximal loads were indeed optimal for maximal power output for HPC when the success criterion was set above the parallel-squat position. However, when the success criterion was defined as the quarter-squat position, the optimal load became the 1RM load.


2017 ◽  
Vol 12 (5) ◽  
pp. 690-696 ◽  
Author(s):  
Gregory Roe ◽  
Joshua Darrall-Jones ◽  
Kevin Till ◽  
Padraic Phibbs ◽  
Dale Read ◽  
...  

Purpose:To evaluate changes in performance of a 6-s cycle-ergometer test (CET) and countermovement jump (CMJ) during a 6-wk training block in professional rugby union players.Methods:Twelve young professional rugby union players performed 2 CETs and CMJs on the 1st and 4th mornings of every week before the commencement of daily training during a 6-wk training block. Standardized changes in the highest score of 2 CET and CMJ efforts were assessed using linear mixed modeling and magnitude-based inferences.Results:After increases in training load during wk 3 to 5, moderate decreases in CMJ peak and mean power and small decreases in flight time were observed during wk 5 and 6 that were very likely to almost certainly greater than the smallest worthwhile change (SWC), suggesting neuromuscular fatigue. However, only small decreases, possibly greater than the SWC, were observed in CET peak power. Changes in CMJ peak and mean power were moderately greater than in CET peak power during this period, while the difference between flight time and CET peak power was small.Conclusion:The greater weekly changes in CMJ metrics in comparison with CET may indicate differences in the capacities of these tests to measure training-induced lower-body neuromuscular fatigue in rugby union players. However, future research is needed to ascertain the specific modes of training that elicit changes in CMJ and CET to determine the efficacy of each test for monitoring neuromuscular function in rugby union players.


2018 ◽  
Vol 124 (4) ◽  
pp. 831-839 ◽  
Author(s):  
Briar L. Rudsits ◽  
Will G. Hopkins ◽  
Christophe A. Hautier ◽  
David M. Rouffet

Force-velocity tests performed on stationary cycle ergometers are widely used to assess the torque- and power-generating capacities of the lower limbs. The aim of this study was to identify how testing and modeling procedures influence the assessment of individual torque-cadence and power-cadence relationships. Seventeen males completed 62 ± 16 pedal cycles from six 6-s all-out efforts interspersed with 5 min of rest. True measures of maximal power for a particular cadence were obtained for 24 ± 3 pedal cycles, while power was only 94 ± 3% of the true maximum in 19 ± 5 pedal cycles. Pedal cycles showing maximal levels of power also displayed higher levels of electromyography (EMG: 89 ± 7 vs . 87 ± 7%) and coactivation (34 ± 11 vs . 31 ± 10 arbitrary units), as well as lower variability in crank torque and EMG profiles. Compared with the linear and second-order polynomial models that are traditionally used, a better goodness of fit was obtained when the torque-cadence and power-cadence relationships were predicted using second- and third-order polynomials, respectively. The later modeling procedures also revealed an asymmetry in the power-cadence relationship in most participants (i.e., 15 out of 17) and provided a better estimation of maximal cadence [Cmax: 214 ± 20 revolutions/min (rpm)] from the x-intercept of power-cadence relationships (C0: 214 ± 14 rpm). Therefore, we recommend predicting the individual shapes of torque- and power-cadence relationships using second- and third-order polynomial regressions after having selected pedal cycles during which true measures of cadence-specific maximal power were recorded. NEW & NOTEWORTHY This study is the first to demonstrate that suboptimal activation of the lower limb muscles accompanied reductions in cadence-specific levels of torque and power produced during a force-velocity test performed on a stationary cycle ergometer. This research is also the first to show that, in most noncyclist participants, torque-cadence relationships are not linear, whereas power-cadence relationships display asymmetric shapes, with power production decreasing rapidly when cadence increases beyond 180 revolutions/min.


Author(s):  
Kolbjørn Lindberg ◽  
Ingrid Eythorsdottir ◽  
Paul Solberg ◽  
Øyvind Gløersen ◽  
Olivier Seynnes ◽  
...  

Purpose: The aim of this study was to examine the concurrent validity of force–velocity (FV) variables assessed across 5 Keiser leg press devices. Methods: A linear encoder and 2 independent force plates (MuscleLab devices) were mounted on each of the 5 leg press devices. A total of 997 leg press executions, covering a wide range of forces and velocities, were performed by 14 participants (29 [7] y, 181 [5] cm, 82 [8] kg) across the 5 devices. Average and peak force, velocity, and power values were collected simultaneously from the Keiser and MuscleLab devices for each repetition. Individual FV profiles were fitted to each participant from peak and average force and velocity measurements. Theoretical maximal force, velocity, and power were deduced from the FV relationship. Results: Average and peak force and velocity had a coefficient of variation of 1.5% to 8.6%, near-perfect correlations (.994–.999), and a systematic bias of 0.7% to 7.1% when compared with reference measurements. Average and peak power showed larger coefficient of variations (11.6% and 17.2%), despite excellent correlations (.977 and .952), and trivial to small biases (3.9% and 8.4%). Extrapolated FV variables showed near-perfect correlations (.983–.997) with trivial to small biases (1.4%–11.2%) and a coefficient of variation of 1.4% to 5.9%. Conclusions: The Keiser leg press device can obtain valid measurements over a wide range of forces and velocities across different devices. To accurately measure power, theoretical maximal power calculated from the FV profile is recommended over average and peak power values from single repetitions, due to the lower random error observed for theoretical maximal power.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 773
Author(s):  
Timothy A. VanHaitsma ◽  
Timothy S. Mahas ◽  
Jefferson Chambers ◽  
Kerry M. Jacques ◽  
Andrea T. White

2003 ◽  
Vol 15 (3) ◽  
pp. 302-312 ◽  
Author(s):  
Craig A. Williams ◽  
Eric Doré ◽  
James Alban ◽  
Emmanuel Van Praagh

This study investigated the differences in short-term power output (STPO) using three different cycle ergometers in 9-year-old children. A total of 31 children participated in three cycle ergometer sprint tests of 20 s duration: a modified friction braked Monark, a modified friction braked Ergomeca cycle ergometer, and a SRM isokinetic ergometer. Common indices of peak and mean power, peak pedal rate, time to peak power, and pedal rate were recorded. Indices of peak power 1 s for the Monark, Ergomeca and SRM ergometer were found to be 299 ± 55, 294 ± 55, 297 ± 53 W and mean power 20 s to be 223 ± 40, 227 ± 43 and 216 ± 34 W, respectively. The time to peak power was found to be 3 ± 2, 6 ± 2, 5 ± 3 s, respectively. The standard error of measurement was lower in mean 20-s power compared to 1-s peak power. Despite instrumentation and protocol differences these results demonstrate reproducibility in 9-year-old children that will allow researchers confidence in comparing STPO data obtained from different ergometers.


2021 ◽  
pp. 317-327
Author(s):  
Alejandro Pérez-Castilla ◽  
Amador García-Ramos ◽  
Danica Janicijevic ◽  
Sergio Miras-Moreno ◽  
Juan Carlos De la Cruz ◽  
...  

This study aimed to compare the between-session reliability of performance and asymmetry variables between unilateral and bilateral standing broad jumps (SBJ). Twenty-four amateur basketball players (12 males and females) completed two identical sessions which consisted of four unilateral SBJs (two with each leg) and two bilateral SBJs. Mean and peak values of force, velocity and power, and impulse were obtained separately for each leg using a dual force platform. Inter-limb asymmetries were computed using the standard percentage difference for the unilateral SBJ, and the bilateral asymmetry index-1 for the bilateral SBJ. All performance variables generally presented an acceptable absolute reliability for both SBJs (CV range = 3.65-9.81%) with some exceptions for mean force, mean power, and peak power obtained with both legs (CV range = 10.00-15.46%). Three out of 14 variables were obtained with higher reliability during the unilateral SBJ (CVratio ≥ 1.18), and 5 out of 14 during the bilateral SBJ (CVratio ≥ 1.27). Asymmetry variables always showed unacceptable reliability (ICCrange = -0.40 to 0.58), and slight to fair levels of agreement in their direction (Kappa range = -0.12 to 0.40) except for unilateral SBJ peak velocity [Kappa = 0.52] and bilateral SBJ peak power [Kappa = 0.51]) that showed moderate agreement for both SBJs. These results highlight that single-leg performance variables can be generally obtained with acceptable reliability regardless of the SBJ variant, but the reliability of the inter-limb asymmetries in the conditions examined in the present study is unacceptable to track individual changes in performance.


Sign in / Sign up

Export Citation Format

Share Document