Validity of Force–Velocity Profiling Assessed With a Pneumatic Leg Press Device

Author(s):  
Kolbjørn Lindberg ◽  
Ingrid Eythorsdottir ◽  
Paul Solberg ◽  
Øyvind Gløersen ◽  
Olivier Seynnes ◽  
...  

Purpose: The aim of this study was to examine the concurrent validity of force–velocity (FV) variables assessed across 5 Keiser leg press devices. Methods: A linear encoder and 2 independent force plates (MuscleLab devices) were mounted on each of the 5 leg press devices. A total of 997 leg press executions, covering a wide range of forces and velocities, were performed by 14 participants (29 [7] y, 181 [5] cm, 82 [8] kg) across the 5 devices. Average and peak force, velocity, and power values were collected simultaneously from the Keiser and MuscleLab devices for each repetition. Individual FV profiles were fitted to each participant from peak and average force and velocity measurements. Theoretical maximal force, velocity, and power were deduced from the FV relationship. Results: Average and peak force and velocity had a coefficient of variation of 1.5% to 8.6%, near-perfect correlations (.994–.999), and a systematic bias of 0.7% to 7.1% when compared with reference measurements. Average and peak power showed larger coefficient of variations (11.6% and 17.2%), despite excellent correlations (.977 and .952), and trivial to small biases (3.9% and 8.4%). Extrapolated FV variables showed near-perfect correlations (.983–.997) with trivial to small biases (1.4%–11.2%) and a coefficient of variation of 1.4% to 5.9%. Conclusions: The Keiser leg press device can obtain valid measurements over a wide range of forces and velocities across different devices. To accurately measure power, theoretical maximal power calculated from the FV profile is recommended over average and peak power values from single repetitions, due to the lower random error observed for theoretical maximal power.

1996 ◽  
Vol 271 (2) ◽  
pp. C676-C683 ◽  
Author(s):  
J. J. Widrick ◽  
S. W. Trappe ◽  
D. L. Costill ◽  
R. H. Fitts

Gastrocnemius muscle fiber bundles were obtained by needle biopsy from five middle-aged sedentary men (SED group) and six age-matched endurance-trained master runners (RUN group). A single chemically permeabilized fiber segment was mounted between a force transducer and a position motor, subjected to a series of isotonic contractions at maximal Ca2+ activation (15 degrees C), and subsequently run on a 5% polyacrylamide gel to determine myosin heavy chain composition. The Hill equation was fit to the data obtained for each individual fiber (r2 > or = 0.98). For the SED group, fiber force-velocity parameters varied (P < 0.05) with fiber myosin heavy chain expression as follows: peak force, no differences: peak tension (force/fiber cross-sectional area), type IIx > type IIa > type I; maximal shortening velocity (Vmax, defined as y-intercept of force-velocity relationship), type IIx = type IIa > type I; a/Pzero (where a is a constant with dimensions of force and Pzero is peak isometric force), type IIx > type IIa > type I. Consequently, type IIx fibers produced twice as much peak power as type IIa fibers, whereas type IIa fibers produced about five times more peak power than type I fibers. RUN type I and IIa fibers were smaller in diameter and produced less peak force than SED type I and IIa fibers. The absolute peak power output of RUN type I and IIa fibers was 13 and 27% less, respectively, than peak power of similarly typed SED fibers. However, type I and IIa Vmax and a/Pzero were not different between the SED and RUN groups, and RUN type I and IIa power deficits disappeared after power was normalized for differences in fiber diameter. Thus the reduced absolute peak power output of the type I and IIa fibers from the master runners was a result of the smaller diameter of these fibers and a corresponding reduction in their peak isometric force production. This impairment in absolute peak power production at the single fiber level may be in part responsible for the reduced in vivo power output previously observed for endurance-trained athletes.


2017 ◽  
Vol 38 (14) ◽  
pp. 1083-1089 ◽  
Author(s):  
Johnny Padulo ◽  
Gian Migliaccio ◽  
Luca Ardigò ◽  
Bruno Leban ◽  
Marco Cosso ◽  
...  

AbstractThe aim was to compare lower-limb power, force, and velocity capabilities between squat and leg press movements. Ten healthy sportsmen performed ballistic lower-limb push-offs against 5-to-12 different loads during both the squat and leg press. Individual linear force-velocity and polynomial power-velocity relationships were determined for both movements from push-off mean force and velocity measured continuously with a pressure sensor and linear encoder. Maximal power output, theoretical maximal force and velocity, force-velocity profile and optimal velocity were computed. During the squat, maximal power output (17.7±3.59 vs. 10.9±1.39 W·kg−1), theoretical maximal velocity (1.66±0.29 vs. 0.88±0.18 m·s−1), optimal velocity (0.839±0.144 vs. 0.465±0.107 m·s−1), and force-velocity profile (−27.2±8.5 vs. −64.3±29.5 N·s·m−1·kg−1) values were significantly higher than during the leg press (p=0.000, effect size=1.72–3.23), whereas theoretical maximal force values (43.1±8.6 vs. 51.9±14.0 N·kg−1, p=0.034, effect size=0.75) were significantly lower. The mechanical capabilities of the lower-limb extensors were different in the squat compared with the leg press with higher maximal power due to much higher velocity capabilities (e.g. ability to produce force at high velocities) even if moderately lower maximal force qualities.


2016 ◽  
Vol 11 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Hamdi Jaafar ◽  
Majdi Rouis ◽  
Elvis Attiogbé ◽  
Henry Vandewalle ◽  
Tarak Driss

Purpose:To verify the hypothesis that the peak power (PP) of a Wingate test (WT) is an underestimation of maximal power (Pmax) computed from the force–velocity test (FVT), to examine possible fatigue effect on Pmax, and to investigate the effect of load on mean power (MP) and fatigue index (FI) during a WT in trained and recreational men.Methods:Ten recreational (22.9 ± 1.7 y, 1.81 ± 0.06 m, 73.3 ± 10.4 kg) and 10 highly trained subjects (22.7 ± 1.4 y, 1.85 ± 0.05 m, 78.9 ± 6.6 kg) performed 2 WTs with 2 loads (8.7% and 11% of body mass [BM]) and an FVT on the same cycle ergometer, in randomized order.Results:Optimal load was equal to 10% BM in recreational participants. Given the quadratic relationship between load and power, the underestimation of Pmax was lower than 10% for the average values of trained and recreational participants with both loads. However, PP with a load equal to 8.7% BM was a large underestimation (~30%) of Pmax in the most powerful individuals. In addition, PP was not greater than Pmax of FVT for the same load. FI was independent of the load only if it was expressed relative to PP. The optimal load for MP during WT was close to the optimal load for PP.Conclusions:The optimal load for WT performance should be approximately equal to 10% BM in recreational subjects. In powerful subjects, the FVT appears to be more appropriate in assessing maximal power, and loads higher than 11% BM should be verified for the WT.


1977 ◽  
Vol 42 (4) ◽  
pp. 471-475 ◽  
Author(s):  
R. A. Binkhorst ◽  
L. Hoofd ◽  
A. C. Vissers

The force-velocity relationship of maximal contractions with the handgrip muscles is established in a group of subjects. The effect of different muscle temperatures is studied. The parameters vo (maximal velocity), Fo (maximal force), Pmax (maximal power), a/Fo and H (both parameters describing the shape of the curve), and Ft/Fo (the value of the force at which power is maximal) are established. It is shown that 1) in repeated measurements the coefficient of variation in general is less than 10% for all the parameters except a/Fo; 2) the parameter a/Fo should be discarded in comparative measurements since it is not linearly related to the course of the curve. A parameter called H should be used instead to describe the curvature; 3) an increase in muscle temperature is accompanied by an increase in magnitude of all parameters except Fo. The temperature effect expressed as Q10 in the range 22–38 degrees C is in the order of 1.2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245791
Author(s):  
Kolbjørn Lindberg ◽  
Paul Solberg ◽  
Thomas Bjørnsen ◽  
Christian Helland ◽  
Bent Rønnestad ◽  
...  

The aim of the study was to examine the test-retest reliability and agreement across methods for assessing individual force-velocity (FV) profiles of the lower limbs in athletes. Using a multicenter approach, 27 male athletes completed all measurements for the main analysis, with up to 82 male and female athletes on some measurements. The athletes were tested twice before and twice after a 2- to 6-month period of regular training and sport participation. The double testing sessions were separated by ~1 week. Individual FV-profiles were acquired from incremental loading protocols in squat jump (SJ), countermovement jump (CMJ) and leg press. A force plate, linear encoder and a flight time calculation method were used for measuring force and velocity during SJ and CMJ. A linear regression was fitted to the average force and velocity values for each individual test to extrapolate the FV-variables: theoretical maximal force (F0), velocity (V0), power (Pmax), and the slope of the FV-profile (SFV). Despite strong linearity (R2>0.95) for individual FV-profiles, the SFV was unreliable for all measurement methods assessed during vertical jumping (coefficient of variation (CV): 14–30%, interclass correlation coefficient (ICC): 0.36–0.79). Only the leg press exercise, of the four FV-variables, showed acceptable reliability (CV:3.7–8.3%, ICC:0.82–0.98). The agreement across methods for F0 and Pmax ranged from (Pearson r): 0.56–0.95, standard error of estimate (SEE%): 5.8–18.8, and for V0 and SFV r: -0.39–0.78, SEE%: 12.2–37.2. With a typical error of 1.5 cm (5–10% CV) in jump height, SFV and V0 cannot be accurately obtained, regardless of the measurement method, using a loading range corresponding to 40–70% of F0. Efforts should be made to either reduce the variation in jumping performance or to assess loads closer to the FV-intercepts. Coaches and researchers should be aware of the poor reliability of the FV-variables obtained from vertical jumping, and of the differences across measurement methods.


Author(s):  
Svitlana Lobchenko ◽  
Tetiana Husar ◽  
Viktor Lobchenko

The results of studies of the viability of spermatozoa with different incubation time at different concentrations and using different diluents are highlighted in the article. (Un) concentrated spermatozoa were diluented: 1) with their native plasma; 2) medium 199; 3) a mixture of equal volumes of plasma and medium 199. The experiment was designed to generate experimental samples with spermatozoa concentrations prepared according to the method, namely: 0.2; 0.1; 0.05; 0.025 billion / ml. The sperm was evaluated after 2, 4, 6 and 8 hours. The perspective of such a study is significant and makes it possible to research various aspects of the subject in a wide range. In this regard, a series of experiments were conducted in this area. The data obtained are statistically processed and allow us to highlight the results that relate to each stage of the study. In particular, in this article it was found out some regularities between the viability of sperm, the type of diluent and the rate of rarefaction, as evidenced by the data presented in the tables. As a result of sperm incubation, the viability of spermatozoa remains at least the highest trend when sperm are diluted to a concentration of 0.1 billion / ml, regardless of the type of diluent used. To maintain the viability of sperm using this concentration of medium 199 is not better than its native plasma, and its mixture with an equal volume of plasma through any length of time incubation of such sperm. Most often it is at this concentration of sperm that their viability is characterized by the lowest coefficient of variation, regardless of the type of diluent used, which may indicate the greatest stability of the result under these conditions. The viability of spermatozoa with a concentration of 0.1 billion / ml is statistically significantly reduced only after 6 or even 8 hours of incubation. If the sperm are incubated for only 2 hours, regardless of the type of diluent used, the sperm concentrations tested do not affect the viability of the sperm. Key words: boar, spermatozoa, sperm plasma, concentration, incubation, medium 199, activity, viability, rarefaction.


1981 ◽  
Vol 27 (7) ◽  
pp. 1272-1276 ◽  
Author(s):  
L R Witherspoon ◽  
S E Shuler ◽  
M M Garcia

Abstract How well the free thyroxine index reflects thyroid functional status depends on the degree to which the triiodothyronine uptake test normalizes the effects of thyroxine binding protein concentrations on the total thyroxine concentration. We examined eight triiodothyronine uptake tests in which were used different secondary binders representative of those available in commercial kits. The relation between triiodothyronine uptake and thyroxine-binding globulin concentrations was established by use of sera from euthyroid individuals. We examined the effects of both high (greater than 20 mg/L) and low (less than 10 mg/L) thyroxine-binding globulin concentrations on triiodothyronine uptake. The precision of each assay, expressed as within- and between-run coefficient of variation, was calculated from multiple measurements on high, low, and midrange triiodothyronine uptake serum pools. The effects of variation in temperature and in exposure times were examined. The clinical most useful assays exhibited the ability to reflect a wide range of thyroxine-binding globulin concentrations and demonstrated little or no time or temperature effects.


Author(s):  
Graham A. Sexstone ◽  
Steven R. Fassnacht ◽  
Juan I. López-Moreno ◽  
Christopher A. Hiemstra

Given the substantial variability of snow in complex mountainous terrain, a considerable challenge of coarse scale modeling applications is accurately representing the subgrid variability of snowpack properties. The snow depth coefficient of variation (CVds) is a useful metric for characterizing subgrid snow distributions but has not been well defined by a parameterization for mountainous environments. This study utilizes lidar-derived snow depth datasets spanning alpine to sub-alpine mountainous terrain in Colorado, USA to evaluate the variability of subgrid snow distributions within a grid size comparable to a 1000 m resolution common for hydrologic and land surface models. The subgrid CVds exhibited a wide range of variability across the 321 km2 study area (0.15 to 2.74) and was significantly greater in alpine areas compared to subalpine areas. Mean snow depth was the dominant driver of CVds variability in both alpine and subalpine areas, as CVds decreased nonlinearly with increasing snow depths. This negative correlation is attributed to the static size of roughness elements (topography and canopy) that strongly influence seasonal snow variability. Subgrid CVds was also strongly related to topography and forest variables; important drivers of CVds included the subgrid variability of terrain exposure to wind in alpine areas and the mean and variability of forest metrics in subalpine areas. Two statistical models were developed (alpine and subalpine) for predicting subgrid CVds that show reasonable performance statistics. The methodology presented here can be used for characterizing the variability of CVds in snow-dominated mountainous regions, and highlights the utility of using lidar-derived snow datasets for improving model representations of snow processes.


2006 ◽  
Vol 6 (3) ◽  
pp. 3913-3943 ◽  
Author(s):  
C. Vogler ◽  
S. Brönnimann ◽  
G. Hansen

Abstract. The historical total ozone measurements taken with Dobson Spectrophotometer #8 at Longyearbyen, Svalbard, Norway, in the period 1950–1962 have been re-analyzed and homogenized based on the original measurement logs, using updated relevant parameters. In lack of sufficient calibration information, an empirical quality assessment was performed, based on a climatological comparison with ozone measurements in Tromsø, using TOMS data at both sites in the period 1979–2001, and Dobson data in the period 1950–1962. The assessment revealed that, as in the case of the Tromsø measurements, the C wavelength pair direct-sun measurements are most trustworthy (and most frequent), while the WMO standard reference mode AD direct-sun has a systematic bias relative to this data set. Zenith-blue (ZB) measurements at solar zenith angles (SZA) <80° were homogenized using two different polynomials before and from 1957; also ZB measurements at larger SZAs were homogenized by means of a normalization function derived from days with measurements over a wide range of SZAs. CC' zenith-cloudy measurements, which are particularly frequent during the summer months, were homogenized by applying correction factors for only two different cloud types: high thin clouds and medium/low/thick clouds; a further diversification of corrections reflecting cloud conditions did not prove significant. The combination of all measurements yields a total of 4837 single values, covering 1676 days from September 1950 to September 1962; moon measurements during the polar night add another 137 daily means. The re-evaluated data show a convincing agreement with measurements since 1979 (TOMS, SAOZ, Dobson) as well as with the 1957–1962 data stored at the World Ozone and UV Data Centre (WOUDC).


Author(s):  
Pedro L. Valenzuela ◽  
Guillermo Sánchez-Martínez ◽  
Elaia Torrontegi ◽  
Javier Vázquez-Carrión ◽  
Zigor Montalvo ◽  
...  

Purpose: To analyze the differences in the force–velocity (F–v) profile assessed under unconstrained (ie, using free weights) and constrained (ie, on a Smith machine) vertical jumps, as well as to determine the between-day reliability. Methods: A total of 23 trained participants (18 [1] y) performed an incremental load squat jump test (with ∼35%, 45%, 60%, and 70% of the subjects’ body mass) on 2 different days using free weights and a Smith machine. Nine of these participants repeated the tests on 2 other days for an exploratory analysis of between-day reliability. F–v variables (ie, maximum theoretical force [F0], velocity [v0], and power, and the imbalance between the actual and the theoretically optimal F–v profile) were computed from jump height. Results: A poor agreement was observed between the F–v variables assessed under constrained and unconstrained conditions (intraclass correlation coefficient [ICC] < .50 for all). The height attained during each single jump performed under both constrained and unconstrained conditions showed an acceptable reliability (coefficient of variation < 10%, ICC > .70). The F–v variables computed under constrained conditions showed an overall good agreement (ICC = .75–.95 for all variables) and no significant differences between days (P > .05), but a high variability for v0, the imbalance between the actual and the theoretically optimal F–v profile, and maximal theoretical power (coefficient of variation = 17.0%–27.4%). No between-day differences were observed for any F–v variable assessed under unconstrained conditions (P > .05), but all of the variables presented a low between-day reliability (coefficient of variation > 10% and ICC < .70 for all). Conclusions: F–v variables differed meaningfully when obtained from constrained and unconstrained loaded jumps, and most importantly seemed to present a low between-day reliability.


Sign in / Sign up

Export Citation Format

Share Document