Can the Lamberts and Lambert Submaximal Cycle Test Indicate Fatigue and Recovery in Trained Cyclists?

2016 ◽  
Vol 11 (3) ◽  
pp. 328-336 ◽  
Author(s):  
Daniel Hammes ◽  
Sabrina Skorski ◽  
Sascha Schwindling ◽  
Alexander Ferrauti ◽  
Mark Pfeiffer ◽  
...  

The Lamberts and Lambert Submaximal Cycle Test (LSCT) is a novel test designed to monitor performance and fatigue/recovery in cyclists. Studies have shown the ability to predict performance; however, there is a lack of studies concerning monitoring of fatigue/recovery. In this study, 23 trained male cyclists (age 29 ± 8 y, VO2max 59.4 ± 7.4 mL · min−1 · kg−1) completed a training camp. The LSCT was conducted on days 1, 8, and 11. After day 1, an intensive 6-day training period was performed. Between days 8 and 11, a recovery period was realized. The LSCT consists of 3 stages with fixed heart rates of 6 min at 60% and 80% and 3 min at 90% of maximum heart rate. During the stages, power output and rating of perceived exertion (RPE) were determined. Heart-rate recovery was measured after stage 3. Power output almost certainly (standardized mean difference: 1.0) and RPE very likely (1.7) increased from day 1 to day 8 at stage 2. Power output likely (0.4) and RPE almost certainly (2.6) increased at stage 3. From day 8 to day 11, power output possibly (–0.4) and RPE likely (–1.5) decreased at stage 2 and possibly (–0.1) and almost certainly (–1.9) at stage 3. Heart-rate recovery was likely (0.7) accelerated from day 1 to day 8. Changes from day 8 to day 11 were unclear (–0.1). The LSCT can be used for monitoring fatigue and recovery, since parameters were responsive to a fatiguing training and a following recovery period. However, consideration of multiple LSCT variables is required to interpret the results correctly.

2016 ◽  
Vol 11 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.


2018 ◽  
Vol 13 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Lieselot Decroix ◽  
Robert P. Lamberts ◽  
Romain Meeusen

Context: The Lamberts and Lambert Submaximal Cycle Test (LSCT) consists of 3 stages during which cyclists cycle for 6 min at 60%, 6 min at 80%, and 3 min at 90% of their maximal heart rate, followed by 1-min recovery. Purpose: To determine if the LSCT is able to reflect a state of functional overreaching in professional female cyclists during an 8-d training camp and the following recovery days. Methods: Six professional female cyclists performed an LSCT on days 1, 5, and 8 of the training camp and 3 d after the training camp. During each stage of the LSCT, power output and rating of perceived exertion (RPE) were determined. Training diaries and Profile of Mood States (POMS) were also completed. Results: At the middle and the end of the training camp, increased power output during the 2nd and 3rd stages of the LSCT was accompanied with increased RPE during these stages and/or the inability to reach 90% of maximal heart rate. All athletes reported increased feelings of fatigue and muscle soreness, while changes in energy balance, calculated from the POMS, were less indicative of a state of overreaching. After 3 d of recovery, all parameters of the LSCT returned to baseline, indicating a state of functional overreaching during the training camp. Conclusion: The LSCT is able to reflect a state of overreaching in elite professional female cyclists during an 8-d training camp and the following recovery days.


2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


Author(s):  
Cristiano Dall’ Agnol ◽  
Tiago Turnes ◽  
Ricardo Dantas De Lucas

Purpose: Cyclists may increase exercise intensity by prolonging exercise duration and/or shortening the recovery period during self-paced interval training, which could impact the time spent near . Thus, the main objective of this study was to compare the time spent near during 4 different self-paced interval training sessions. Methods: After an incremental test, 11 cyclists (mean [SD]: age = 34.4 [6.2] y; ) performed in a randomized order 4 self-paced interval training sessions characterized by a work–recovery ratio of 4:1 or 2:1. Sessions comprised 4 repetitions of 4 minutes of cycling with 1 minute (4/1) or 2 minutes (4/2) of active recovery or 8 minutes of cycling with 2 minutes (8/2) or 4 minutes (8/4) of active recovery. Time spent at 90% to 94% (), ≥95% (), and 90% to 100% () was analyzed in absolute terms and relative to the total work duration. Power output, heart rate, blood lactate, and rating of perceived exertion were compared. Results: The 8/4 session provided higher absolute and than 8/2 (P = .015 and .029) and 4/1 (P = .002 and .047). The 4/2 protocol elicited higher relative (47.7% [26.9%]) and (23.5% [22.7%]) than 4/1 (P = .015 and .028) and 8/2 (P < .01). Session 4/2 (275 [23] W) elicited greater mean power output (P < .01) than 4/1 (261 [27] W), 8/4 (250 [25] W), and 8/2 (234 [23] W). Conclusions: Self-paced interval training composed of 4-minute and 8-minute work periods efficiently elicit , but protocols with a work–recovery ratio of 2:1 (ie, 4/2 and 8/4) could be prioritized to maximize .


2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


2002 ◽  
Vol 95 (3_suppl) ◽  
pp. 1047-1062 ◽  
Author(s):  
Mee-Lee Leung ◽  
Pak-Kwong Chung ◽  
Raymond W. Leung

This study evaluated the validity and reliability of the Chinese-translated (Cantonese) versions of the Borg 6–20 Rating of Perceived Exertion (RPE) scale and the Children's Effort Rating Table (CERT) during continuous incremental cycle ergometry with 10- to 11-yr.-old Hong Kong school children. A total of 69 children were randomly assigned, with the restriction of groups being approximately equal, to two groups using the two scales, CERT ( n = 35) and RPE ( n = 34). Both groups performed two trials of identical incremental continuous cycling exercise (Trials 1 and 2) 1 wk. apart for the reliability test. Objective measures of exercise intensity (heart rate, absolute power output, and relative oxygen consumption) and the two subjective measures of effort were obtained during the exercise. For both groups, significant Pearson correlations were found for perceived effort ratings correlated with heart rate ( rs ≥ .69), power output ( rs ≥ .75), and oxygen consumption ( rs ≥ .69). In addition, correlations for CERT were consistently higher than those for RPE. High test-retest intraclass correlations were found for both the effort ( R = .96) and perceived exertion ( R = 89) groups, indicating that the scales were reliable. In conclusion, the CERT and RPE scales, when translated into Cantonese, are valid and reliable measures of exercise intensity during controlled exercise by children. The Effort rating may be better than the Perceived Exertion scale as a measure of perceived exertion that can be more validly and reliably used with Hong Kong children.


Author(s):  
Benoit Capostagno ◽  
Andrew Bosch

This study examined the differences in fat and carbohydrate oxidation during running and cycling at the same relative exercise intensities, with intensity determined in a number of ways. Specifically, exercise intensity was expressed as a percentage of maximum workload (WLmax), maximum oxygen uptake (%VO2max), and maximum heart rate (%HRmax) and as rating of perceived exertion (RPE). Ten male triathletes performed maximal running and cycling trials and subsequently exercised at 60%, 65%, 70%, 75%, and 80% of their WLmax. VO2, HR, RPE, and plasma lactate concentrations were measured during all submaximal trials. Fat and carbohydrate oxidation were calculated from VO2 and VCO2 data. A 2-way ANOVA for repeated measures was used to determine any statistically significant differences between exercise modes. Fat oxidation was shown to be significantly higher in running than in cycling at the same relative intensities expressed as either %WLmax or %VO2max. Neither were there any significant differences in VO2max and HRmax between the 2 exercise modes, nor in submaximal VO2 or RPE between the exercise modes at the same %WLmax. However, heart rate and plasma lactate concentrations were significantly higher when cycling at 60% and 65% and 65–80%WLmax, respectively. In conclusion, fat oxidation is significantly higher during running than during cycling at the same relative intensity expressed as either %WLmax or %VO2max.


2010 ◽  
Vol 35 (5) ◽  
pp. 650-656 ◽  
Author(s):  
Richard J. Simpson ◽  
Scott M. Graham ◽  
Geraint D. Florida-James ◽  
Christopher Connaboy ◽  
Richard Clement ◽  
...  

Identifying field measures to estimate backpack load-carriage work intensity in elite soldiers is of interest to the military. This study developed rating of perceived exertion (RPE) and heart rate models to define metabolic workload for a backpack load-carriage task valid for a population of elite soldiers using serial data. Male soldiers (n = 18) from the British Parachute or Special Air Service Regiment completed an incremental treadmill walking and (or) running protocol while carrying a 20-kg backpack. Heart rate, RPE, and oxygen uptake were recorded at each incremental stage of the protocol. Linear mixed models were used to model the RPE and heart rate data in the metric of measured peak oxygen uptake. Workload was accurately estimated using RPE alone (SE = 6.03), percentage of estimated maximum heart rate (%E-MHR) (SE = 6.9), and percentage of measured maximum heart rate (%M-MHR) (SE = 4.9). Combining RPE and %E-MHR resulted in a field measure with an accuracy (SE = 4.9) equivalent to the %M-MHR model. We conclude that RPE, %E-MHR, and %M-MHR provide accurate field-based proxy measures of metabolic workload in elite British soldiers performing a backpack load-carriage task. The model is accurate for the metabolic range measured by these serial data for the backpack load-carriage task.


2020 ◽  
Vol 127 (5) ◽  
pp. 912-924 ◽  
Author(s):  
Morgan C. Karow ◽  
Rebecca R. Rogers ◽  
Joseph A. Pederson ◽  
Tyler D. Williams ◽  
Mallory R. Marshall ◽  
...  

This study investigated the effects of preferred and non-preferred warm-up music listening conditions on subsequent exercise performance. A total of 12 physically active male and female participants engaged in a crossover, counterbalanced research design in which they completed exercise trials after 3 different warm-up experiences of (a) no music (NM), (b) preferred music (PREF), and (c) nonpreferred music (NON-PREF). Participants began warming up by rowing at 50% of of age-predicted heart rate maximum (HRmax) for 5 minutes while exposed to the three music conditions. Immediately following the warm-up and cessation of any music, participants completed a 2000-m rowing time trial as fast as possible. Relative power output, trial time, heart rate, rating of perceived exertion, and motivation were analyzed. Results indicated that, compared with NM, relative power output was significantly higher ( p  =   .018), trial time was significantly lower ( p  =   .044), and heart rate was significantly higher ( p  =   .032) during the PREF but not the NON-PREF condition. Rating of perceived exertion was not altered, regardless of music condition ( p > .05). Motivation to exercise was higher during the PREF condition versus the NM ( p  =   .001) and NON-PREF ( p <  .001) conditions. Listening to preferred warm-up music improved subsequent exercise performance compared with no music, while nonpreferred music did not impart ergogenic benefit.


Sign in / Sign up

Export Citation Format

Share Document