Maintenance of Velocity and Power With Cluster Sets During High-Volume Back Squats

2016 ◽  
Vol 11 (7) ◽  
pp. 885-892 ◽  
Author(s):  
James J. Tufano ◽  
Jenny A. Conlon ◽  
Sophia Nimphius ◽  
Lee E. Brown ◽  
Laurent B. Seitz ◽  
...  

Purpose:To compare the effects of a traditional set structure and 2 cluster set structures on force, velocity, and power during back squats in strength-trained men.Methods:Twelve men (25.8 ± 5.1 y, 1.74 ± 0.07 m, 79.3 ± 8.2 kg) performed 3 sets of 12 repetitions at 60% of 1-repetition maximum using 3 different set structures: traditional sets (TS), cluster sets of 4 (CS4), and cluster sets of 2 (CS2).Results:When averaged across all repetitions, peak velocity (PV), mean velocity (MV), peak power (PP), and mean power (MP) were greater in CS2 and CS4 than in TS (P < .01), with CS2 also resulting in greater values than CS4 (P < .02). When examining individual sets within each set structure, PV, MV, PP, and MP decreased during the course of TS (effect sizes 0.28–0.99), whereas no decreases were noted during CS2 (effect sizes 0.00–0.13) or CS4 (effect sizes 0.00–0.29).Conclusions:These results demonstrate that CS structures maintain velocity and power, whereas TS structures do not. Furthermore, increasing the frequency of intraset rest intervals in CS structures maximizes this effect and should be used if maximal velocity is to be maintained during training.

2017 ◽  
Vol 12 (4) ◽  
pp. 463-469 ◽  
Author(s):  
James J. Tufano ◽  
Jenny A. Conlon ◽  
Sophia Nimphius ◽  
Lee E. Brown ◽  
Harry G. Banyard ◽  
...  

Purpose:To determine the effects of intraset rest frequency and training load on muscle time under tension, external work, and external mechanical power output during back-squat protocols with similar changes in velocity.Methods:Twelve strength-trained men (26.0 ± 4.2 y, 83.1 ± 8.8 kg, 1.75 ± 0.06 m, 1.88:0.19 one-repetition-maximum [1RM] body mass) performed 3 sets of 12 back squats using 3 different set structures: traditional sets with 60% 1RM (TS), cluster sets of 4 with 75% 1RM (CS4), and cluster sets of 2 with 80% 1RM (CS2). Repeated-measures ANOVAs were used to determine differences in peak force (PF), mean force (MF), peak velocity (PV), mean velocity (MV), peak power (PP), mean power (MP), total work (TW), total time under tension (TUT), percentage mean velocity loss (%MVL), and percentage peak velocity loss (%PVL) between protocols.Results:Compared with TS and CS4, CS2 resulted in greater MF, TW, and TUT in addition to less MV, PV, and MP. Similarly, CS4 resulted in greater MF, TW, and TUT in addition to less MV, PV, and MP than TS did. There were no differences between protocols for %MVL, %PVL, PF, or PP.Conclusions:These data show that the intraset rest provided in CS4 and CS2 allowed for greater external loads than with TS, increasing TW and TUT while resulting in similar PP and %VL. Therefore, cluster-set structures may function as an alternative method to traditional strength- or hypertrophy-oriented training by increasing training load without increasing %VL or decreasing PP.


Author(s):  
Manuel V Garnacho-Castaño ◽  
Arturo Muñoz-González ◽  
María A Garnacho-Castaño ◽  
José L Maté-Muñoz

Knowledge of the power– and velocity–load relationships is a key factor to guide loads during resistance training and optimize sports performance. This study compares mean velocity–, peak velocity– and power–load relationships, and determines the load which elicits maximal power output in the military press and bench press. Fifty-seven healthy, active men were randomly assigned to a bench press (n = 28) or military press (n = 29) group. In separate test sessions, concentric-only or eccentric-concentric sequences of each exercise were performed in random order as incremental isoinertial load tests. Both mean velocity and peak velocity were highly related with the load lifted (% 1RM) in both bench press and military press (mean velocity: R2 = 0.94 and 0.95; peak velocity: R2 = 0.93 and 0.93, respectively). The loads maximizing mean power and peak power output were similar for the eccentric-concentric versus concentric sequences in bench press and military press. The loads maximizing mean power and peak power were between 54% and 57.5% 1RM for the bench press and 59.8%–63.1% 1RM for the military press. For the bench press, no significant differences were observed in mean power from 30% to 80% 1RM and peak power from 30% to 95% 1RM. For the military press, no significant differences were observed in mean power from 40% to 80% 1RM and peak power from 30% to 90%/95% 1RM. The close relationship detected between mean velocity or peak velocity and load means that the % 1RM can be estimated according to mean velocity and peak velocity. In both exercises, a broad range of relative intensities could be used at which power output is not significantly different than that at maximized power output (mean = 30%/40%–80% 1RM; peak = 30%–90%/95%). Mean velocity lower than approximately 0.33 m s−1 for bench press and 0.4 m s−1 for military press, as well as peak velocity lower than approximately 0.4 m s−1 for bench press and 0.5 m s−1 for military press do not optimize power output responses. The eccentric action was a determining factor for increasing power output only in bench press.


Author(s):  
Alejandro Pérez-Castilla ◽  
Danica Janicijevic ◽  
Zeki Akyildiz ◽  
Deniz Senturk ◽  
Amador García-Ramos

This study aimed to compare the between-session reliability of different performance variables during 2 variants of the Smith machine back-squat exercise. Twenty-six male wrestlers performed 5 testing sessions (a 1-repetition maximum [1RM] session, and 4 experimental sessions [2 with the pause and 2 with the rebound technique]). Each experimental session consisted of performing 3 repetitions against 5 loads (45–55–65–75–85% of the 1RM). Mean velocity (MV), mean power (MP), peak velocity (PV), and peak power (PP) variables were recorded by a linear position transducer (GymAware PowerTool). The best and average scores of the 3 repetitions were considered for statistical analyses. The coefficient of variation (CV) ranged from 3.89% (best PV score at 55% 1 RM using the pause technique) to 10.29% (average PP score at 85% 1 RM using the rebound technique). PP showed a lower reliability than MV, MP, and PV (CVratio ≥ 1.26). The reliability was comparable between the exercise techniques (CVratio = 1.08) and between the best and average scores (CVratio = 1.04). These results discourage the use of PP to assess back-squat performance at submaximal loads. The remaining variables (MV, MP, or PV), exercise techniques (pause or rebound), and repetition criteria (best score or average score) can be indistinctly used due to their acceptable and comparable reliability.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255458
Author(s):  
Alejandro Pérez-Castilla ◽  
Amador García-Ramos ◽  
Danica Janicijevic ◽  
Gabriel Delgado-García ◽  
Juan Carlos De la Cruz ◽  
...  

This study aimed to evaluate the between-session reliability of single-leg performance and asymmetry variables during unilateral and bilateral countermovement jumps (CMJ). Twenty-three basketball players completed two identical sessions which consisted of four unilateral CMJs (two with each leg) and two bilateral CMJs. Mean and peak values of force, velocity and power, impulse, and jump height were obtained separately for each leg using a dual force platform. All performance variables presented an acceptable reliability (CVrange = 4.05–9.98%) with the exceptions of jump height for the unilateral CMJs and mean power, peak velocity, peak power, and impulse for the left leg during the bilateral CMJ (CV≥11.0%). Nine out of 14 variables were obtained with higher reliability during the unilateral CMJ (CVratio≥1.16), and 4 out of 14 during the bilateral CMJ (CVratio≥1.32). Asymmetry variables always showed an unacceptable reliability (ICCrange = 0.15–0.64) and poor/slight levels of agreement in direction (Kapparange = -0.10 to 0.15) for the unilateral CMJ, while an acceptable reliability (ICCrange = 0.74–0.77) and substantial levels of agreement in direction (Kapparange = 0.65 to 0.74) were generally obtained for the bilateral CMJ. These results suggest that single-leg performance can be obtained with higher reliability during the unilateral CMJ, while the bilateral CMJ provides more consistent measures of inter-limb asymmetries.


2017 ◽  
Vol 60 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Robert G. Lockie ◽  
Samuel J. Callaghan ◽  
Matthew R. Moreno ◽  
Fabrice G. Risso ◽  
Tricia M. Liu ◽  
...  

Abstract The study aim was to determine relationships between mechanical variables in the one-repetition maximum (1RM) traditional bench press (TBP) and close-grip bench press (CGBP). Twenty resistance-trained men completed a TBP and CGBP 1RM. The TBP was performed with the preferred grip; the CGBP with a grip width of 95% biacromial distance. A linear position transducer measured: lift distance and duration; work; and peak and mean power, velocity, and force. Paired samples t-tests (p < 0.05) compared the 1RM and mechanical variables for the TBP and CGBP; effect sizes (d) were also calculated. Pearson’s correlations (r; p < 0.05) computed relationships between the TBP and CGBP. 1RM, lift duration, and mean force were greater in the TBP (d = 0.30-3.20). Peak power and velocity was greater for the CGBP (d = 0.50-1.29). The 1RM TBP correlated with CGBP 1RM, power, and force (r = 0.685-0.982). TBP work correlated with CGBP 1RM, lift distance, power, force, and work (r = 0.542-0.931). TBP power correlated with CGBP 1RM, power, force, velocity, and work (r = 0.484-0.704). TBP peak and mean force related to CGBP 1RM, power, and force (r = 0.596-0.980). Due to relationships between the load, work, power, and force for the TBP and CGBP, the CGBP could provide similar strength adaptations to the TBP with long-term use. The velocity profile for the CGBP was different to that of the TBP. The CGBP could be used specifically to improve high-velocity, upper-body pushing movements.


2017 ◽  
Vol 12 (9) ◽  
pp. 1170-1176 ◽  
Author(s):  
Harry G. Banyard ◽  
Ken Nosaka ◽  
Kimitake Sato ◽  
G. Gregory Haff

Purpose:To examine the validity of 2 kinematic systems for assessing mean velocity (MV), peak velocity (PV), mean force (MF), peak force (PF), mean power (MP), and peak power (PP) during the full-depth free-weight back squat performed with maximal concentric effort. Methods:Ten strength-trained men (26.1 ± 3.0 y, 1.81 ± 0.07 m, 82.0 ± 10.6 kg) performed three 1-repetition-maximum (1RM) trials on 3 separate days, encompassing lifts performed at 6 relative intensities including 20%, 40%, 60%, 80%, 90%, and 100% of 1RM. Each repetition was simultaneously recorded by a PUSH band and commercial linear position transducer (LPT) (GymAware [GYM]) and compared with measurements collected by a laboratory-based testing device consisting of 4 LPTs and a force plate. Results:Trials 2 and 3 were used for validity analyses. Combining all 120 repetitions indicated that the GYM was highly valid for assessing all criterion variables while the PUSH was only highly valid for estimations of PF (r = .94, CV = 5.4%, ES = 0.28, SEE = 135.5 N). At each relative intensity, the GYM was highly valid for assessing all criterion variables except for PP at 20% (ES = 0.81) and 40% (ES = 0.67) of 1RM. Moreover, the PUSH was only able to accurately estimate PF across all relative intensities (r = .92–.98, CV = 4.0–8.3%, ES = 0.04–0.26, SEE = 79.8–213.1 N). Conclusions:PUSH accuracy for determining MV, PV, MF, MP, and PP across all 6 relative intensities was questionable for the back squat, yet the GYM was highly valid at assessing all criterion variables, with some caution given to estimations of MP and PP performed at lighter loads.


2021 ◽  
Vol 16 (1) ◽  
pp. 66-72
Author(s):  
Justin J. Merrigan ◽  
James J. Tufano ◽  
Michael Falzone ◽  
Margaret T. Jones

Purpose: To identify acute effects of a single accentuated eccentric loading (AEL) repetition on subsequent back-squat kinetics and kinematics with different concentric loads. Methods: Resistance-trained men (N = 21) participated in a counterbalanced crossover design and completed 4 protocols (sets × repetitions at eccentric/concentric) as follows: AEL65, 3 × 5 at 120%/65% 1-repetition maximum (1-RM); AEL80, 3 × 3 at 120%/80% 1-RM; TRA65, 3 × 5 at 65%/65% 1-RM; and TRA80, 3 × 3 at 80%/80% 1-RM. During AEL, weight releasers disengaged from the barbell after the eccentric phase of the first repetition and remained off for the remaining repetitions. All repetitions were performed on a force plate with linear position transducers attached to the barbell, from which eccentric and concentric peak and mean velocity, force, and power were derived. Results: Eccentric peak velocity (−0.076 [0.124] m·s−1; P = .01), concentric peak force (187.8 [284.4] N; P = .01), eccentric mean power (−145.2 [62.0] W; P = .03), and eccentric peak power (−328.6 [93.7] W; P < .01) during AEL65 were significantly greater than TRA65. When collapsed across repetitions, AEL65 resulted in slower eccentric velocity and power during repetition 1 but faster eccentric and concentric velocity and power in subsequent repetitions (P ≤ .04). When comparing AEL80 with TRA80, concentric peak force (133.8 [56.9] N; P = .03), eccentric mean power (−83.57 [38.0] W; P = .04), and eccentric peak power (−242.84 [67.3] W; P < .01) were enhanced. Conclusions: Including a single supramaximal eccentric phase of 120% 1-RM increased subsequent velocity and power with concentric loads of 65% 1-RM, but not 80% 1-RM. Therefore, AEL is sensitive to the magnitude of concentric loads, which requires a large relative difference to the eccentric load, and weight releasers may not need to be reloaded to induce performance enhancement.


2020 ◽  
Vol 15 (2) ◽  
pp. 255-261 ◽  
Author(s):  
Justin J. Merrigan ◽  
James J. Tufano ◽  
Jonathan M. Oliver ◽  
Jason B. White ◽  
Jennifer B. Fields ◽  
...  

Purpose: To examine rest redistribution (RR) effects on back squat kinetics and kinematics in resistance-trained women. Methods: Twelve women from strength and college sports (5.0 [2.2] y training history) participated in the randomized crossover design study with 72 hours between sessions (3 total). Participants completed 4 sets of 10 repetitions using traditional sets (120-s interset rest) and RR (30-s intraset rest in the middle of each set; 90-s interset rest) with 70% of their 1-repetition maximum. Kinetics and kinematics were sampled via force plate and 4 linear position transducers. The greatest value of repetitions 1 to 3 (peak repetition) was used to calculate percentage loss, [(repetition 10–peak repetition)/(peak repetition) × 100], and maintenance, {100–[(set mean–peak repetition)/(peak repetition)] × 100}, of velocity and power for each set. Repeated-measures analysis of variance was used for analyses (P < .05). Results: Mean and peak force did not differ between conditions. A condition × repetition interaction existed for peak power (P = .049) but not for peak velocity (P = .110). Peak power was greater in repetitions 7 to 9 (P < .05; d = 1.12–1.27) during RR. The percentage loss of velocity (95% confidence interval, –0.22% to –7.22%; P = .039) and power (95% confidence interval, –1.53% to –7.87%; P = .008) were reduced in RR. Mean velocity maintenance of sets 3 (P = .036; d = 1.90) and 4 (P = .015; d = 2.30) and mean power maintenance of set 4 (P = .006; d = 2.65) were greater in RR. Conclusion: By redistributing a portion of long interset rest into the middle of a set, velocity and power were better maintained. Therefore, redistributing rest may be beneficial for reducing fatigue in resistance-trained women.


2020 ◽  
Vol 15 (7) ◽  
pp. 1012-1018
Author(s):  
Guillaume Levernier ◽  
Pierre Samozino ◽  
Guillaume Laffaye

Purpose: To compare the force-production capacities among boulderers, lead climbers, and speed climbers during a pull-up test using a force–velocity–power profile. Methods: In total, 24 high-elite climbers (11 boulderers, 8 lead climbers, and 5 speed climbers) did 2 pull-ups at different percentages of their body mass (0%, 30%, 45%, 60%, and 70%). Force–velocity–power profile analyses were performed with the use of an accelerometer for each load. The intraclass correlation and coefficients of variation were calculated. A 1-way analysis of variance was performed with a Tukey post hoc test to assess the difference between the groups. Results: Regarding force, the coefficient of variation ranged from 1.00% to 6.18% and the intraclass correlation ranged from .98 to .99. For velocity, the coefficient of variation ranged from 2.75% to 6.62% and the intraclass correlation ranged from .84 to .95. The linear regression slope showed R2 to be between .93 and .99, confirming the high quality of the linear relationship between velocity and the external force produced during a pull-up. Boulderers presented significantly higher (P < .05) maximal power (+22.30% and +26.29%), mean power for the pull-up at body weight (+23.49% and +25.35%), and theoretical maximal velocity at zero force (+23.92% and +21.53%) than lead and speed climbers and a more significant curve increase (+35.21% compared with lead climbers). Conclusions: The reliability of the method was shown to be high. Moreover, boulderers were able to develop an important external force and had the capacity to maintain high speed when force production increased.


2011 ◽  
Vol 6 (4) ◽  
pp. 455-468 ◽  
Author(s):  
Keir T. Hansen ◽  
John B. Cronin ◽  
Michael J. Newton

Purpose:The purpose of this study was to investigate the effect of set structure, in terms of repetition workrest ratios on force, velocity, and power during jump squat training.Methods:Twenty professional and semiprofessional rugby players performed training sessions comprising four sets of 6 repetitions of a jump squat using four different set configurations. The first involved a traditional configuration (TR) of 4 × 6 repetitions with 3 min of rest between sets, the second (C1) 4 × 6 × singles (1 repetition) with 12 s of rest between repetitions, the third (C2) 4x3 × doubles (2 repetitions) with 30 s of rest between pairs, and the third (C3) 4 × 2 × triples (3 repetitions) with 60 s of rest between triples. A spreadsheet for the analysis of controlled trials that calculated the P-value, and percent difference and Cohen’s effect size from log-transformed data was used to investigate differences in repetition force, velocity, and power profiles among configurations.Results:Peak power was significantly lower (P < .05) for the TR condition when compared with C1 and C3 for repetition 4, and all cluster configurations for repetitions 5 and 6. Peak velocity was significantly lower (P < .05) for the TR condition compared with C3 at repetition 4, significantly lower compared with C2 and C3 at repetition 5, and significantly lower compared with all cluster conditions for repetition 6.Conclusions:Providing inter-repetition rest during a traditional set of six repetitions can attenuate decreases in power and velocity of movement through the set.


Sign in / Sign up

Export Citation Format

Share Document