Effects of 2 Intersection Strategies for Physical Recovery in Jiu-Jitsu Athletes

Author(s):  
Eurico P. César ◽  
Cleito S.R. Júnior ◽  
Raphael N. Francisco

Purpose: To compare the effect of static stretching (SS) and cold-water immersion (CWI) on strength performance and blood lactate levels of jiu-jitsu athletes. Methods: A total of 21 male Brazilian jiu-jitsu fighters were randomly assigned to SS (9 × 30-s carpal extension), CWI (3 × 3 min at 10°C), or a control group (CG); their maximal handgrip strength, handgrip muscle endurance, dynamic kimono grip strength test, and blood lactate concentration were assessed before and after a simulated Brazilian jiu-jitsu fight and after one of the recovery interventions. Results: There was an interaction (F = 9.075; P = .002) and a time effect (F = 11.792; P = .003) for dynamic kimono grip strength test, showing a decrease in performance for the CG (P = .0001; effect size [ES] = 0.52, moderate) and after SS (P = .006; ES = 0.43, small). There was an interaction (F = 3.592; P = .015) and a time effect (F = 122.631; P = .0001) for blood lactate concentration, showing lower levels after CWI versus CG (P = .028; ES = 0.93, moderate) and after CWI versus SS (P = .042; ES = 0.82, moderate). There was an interaction (F = 9.617; P = .001) for handgrip strength, showing an impairment in performance after SS (P = .001; ES = 0.67, moderate). Conclusion: CWI promoted restoration of muscle strength and endurance and reduction in blood lactate levels after the simulated fight and can thus be used by jiu-jitsu athletes as a recovery strategy between fights.

Author(s):  
Giovanni Carpenè ◽  
Diletta Onorato ◽  
Riccardo Nocini ◽  
Gianmarco Fortunato ◽  
John G. Rizk ◽  
...  

Abstract Coronavirus disease 2019 (COVID-19) is an infectious respiratory condition sustained by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which manifests prevalently as mild to moderate respiratory tract infection. Nevertheless, in a number of cases the clinical course may deteriorate, with onset of end organ injury, systemic dysfunction, thrombosis and ischemia. Given the clinical picture, baseline assessment and serial monitoring of blood lactate concentration may be conceivably useful in COVID-19. We hence performed a systematic literature review to explore the possible association between increased blood lactate levels, disease severity and mortality in COVID-19 patients, including comparison of lactate values between COVID-19 and non-COVID-19 patients. We carried out an electronic search in Medline and Scopus, using the keywords “COVID-19” OR “SARS-CoV-2” AND “lactate” OR “lactic acid” OR “hyperlactatemia”, between 2019 and present time (i.e. October 10, 2021), which allowed to identify 19 studies, totalling 6,459 patients. Overall, we found that COVID-19 patients with worse outcome tend to display higher lactate values than those with better outcome, although most COVID-19 patients in the studies included in our analysis did not have sustained baseline hyperlactatemia. Substantially elevated lactate values were neither consistently present in all COVID-19 patients who developed unfavourable clinical outcomes. These findings suggest that blood lactate monitoring upon admission and throughout hospitalization may be useful for early identification of higher risk of unfavourable COVID-19 illness progression, though therapeutic decisions based on using conventional hyperlactatemia cut-off values (i.e., 2.0 mmol/L) upon first evaluation may be inappropriate in patients with SARS-CoV-2 infection.


1986 ◽  
Vol 60 (1) ◽  
pp. 232-241 ◽  
Author(s):  
R. S. Mazzeo ◽  
G. A. Brooks ◽  
D. A. Schoeller ◽  
T. F. Budinger

Lactate irreversible disposal (RiLa) and oxidation (RoxLa) rates were studied in six male subjects during rest (Re), easy exercise [EE, 140 min of cycling at 50% of maximum O2 consumption (VO2max)] and hard exercise (HE, 65 min at 75% VO2max). Twenty minutes into each condition, subjects received a Na+-L(+)-[1–13C]lactate intravenous bolus injection. Blood was sampled intermittently from the contralateral arm for metabolite levels, acid-base status, and enrichment of 13C in lactate. Expired air was monitored continuously for determination of respiratory parameters, and aliquots were collected for determination of 13C enrichment in CO2. Steady-rate values for O2 consumption (VO2) were 0.33 +/- 0.01, 2.11 +/- 0.03, and 3.10 +/- 0.03 l/min for Re, EE, and HE, respectively. Corresponding values of blood lactate levels were 0.84 +/- 0.01, 1.33 +/- 0.05, and 4.75 +/- 0.28 mM in the three conditions. Blood lactate disposal rates were significantly correlated to VO2 (r = 0.78), averaging 123.4 +/- 20.7, 245.5 +/- 40.3, and 316.2 +/- 53.7 mg X kg-1 X h-1 during Re, EE, and HE, respectively. Lactate oxidation rate was also linearly related to VO2 (r = 0.81), and the percentage of RiLa oxidized increased from 49.3% at rest to 87.0% during exercise. A curvilinear relationship was found between RiLa and blood lactate concentration. It was concluded that, in humans, 1) lactate disposal (turnover) rate is directly related to the metabolic rate, 2) oxidation is the major fate of lactate removal during exercise, and 3) blood lactate concentration is not an accurate indicator of lactate disposal and oxidation.


1996 ◽  
Vol 4 (3) ◽  
pp. 286-296
Author(s):  
Fiona Iredale ◽  
Frank Bell ◽  
Myra Nimmo

Fourteen sedentary 50- to 55-year-old men were exercised to exhaustion using an incremental treadmill protocol. Mean (±SEM) peak oxygen uptake (V̇O2peak) was 40.5 ± 1.19 ml · kg1· min−1, and maximum heart rate was 161 ± 4 beats · min−1. Blood lactate concentration was measured regularly to identify the lactate threshold (oxygen consumption at which blood lactate concentration begins to systematically increase). Threshold occurred at 84 ± 2% of V̇O2peak. The absolute lactate value at threshold was 2.9 ± 0.2 mmol · L−1. On a separate occasion, 6 subjects exercised continuously just below their individual lactate thresholds for 25 min without significantly raising their blood lactate levels from the 10th minute to the 25th. The absolute blood lactate level over the last 20 min of the steady-state test averaged 3.7 ± 1.2 mmol · L−1. This value is higher than that elicited at the threshold in the incremental test because of the differing nature of the protocols. It was concluded that although the lactate threshold occurs at a high percentage of V̇O2peak, subjects are still able to sustain exercise at that intensity for 25 min.


2003 ◽  
Vol 98 (4) ◽  
pp. 888-896 ◽  
Author(s):  
Qinghua Sun ◽  
Zizhi Tu ◽  
Suzana Lobo ◽  
George Dimopoulos ◽  
Nathalie Nagy ◽  
...  

Background The authors evaluated optimal adrenergic support using norepinephrine, dopamine, and dobutamine in a clinically relevant model of septic shock. Methods Twenty-eight mature, female, anesthetized sheep (weight, 30.5 +/- 3.6 kg) underwent cecal ligation and perforation and were randomized into four groups of seven animals to be treated with norepinephrine, dopamine-norepinephrine, dobutamine-norepinephrine, or no adrenergic agent. In all groups, lactated Ringer's solution was administered to restore cardiac filling pressures to baseline. In the norepinephrine group, norepinephrine (0.5-5 microg. kg(-1). min(-1)) was titrated to maintain mean arterial pressure between 75-85 mmHg. In the dopamine-norepinephrine group, dopamine was given first, and norepinephrine was added only when mean arterial pressure remained below 75 mmHg despite the infusion of 20 microg. kg(-1). min(-1) dopamine. In the dobutamine-norepinephrine group, dobutamine was started at the same time as norepinephrine and titrated up to 20 microg. kg(-1). min(-1) to get a 15% increase in cardiac output. Results The dobutamine-norepinephrine group had greater cardiac output; superior mesenteric blood flow, oxygen delivery (Do(2)), and oxygen consumption ([OV0312]o(2)); and lower blood lactate concentration and partial pressure of carbon dioxide (Pco(2)) gap than the controls did. Cumulative urine output was significantly higher in the dobutamine-norepinephrine group than in the other groups. Survival time was significantly longer in the dobutamine-norepinephrine (24 +/- 4 h), dopamine- norepinephrine (24 +/- 6 h), and norepinephrine (20 +/- 1 h) groups than the control group (17 +/- 2 h; P < 0.05 vs. other groups), and significantly longer in the combined dopamine-norepinephrine and dobutamine-norepinephrine groups (24 +/- 5 h) than in the norepinephrine alone group (P < 0.05). Histologic examination of lung biopsies revealed less severe lesions in the dobutamine-norepinephrine group than in the control and norepinephrine alone groups. Anatomic alterations in the lung, liver, and small intestine were less severe in the dobutamine-norepinephrine group than in the other groups. Conclusions In this prolonged septic shock model, association of norepinephrine with either dopamine or dobutamine resulted in the longest survival and the least severe pulmonary lesions. The combination of dobutamine with norepinephrine was associated with a better myocardial performance, greater Do(2) and [OV0312]o(2), lower blood lactate concentration and Pco(2) gap, and less anatomic injury.


1976 ◽  
Vol 33 (1) ◽  
pp. 173-176 ◽  
Author(s):  
William R. Driedzic ◽  
Joe W. Kiceniuk

Rainbow trout (Salmo gairdneri) were exercised to fatigue in a series of 60-min stepwise increasing velocity increments. There was no increase in blood lactate concentration, serially sampled during swimming by means of indwelling dorsal and ventral aortic catheters, at velocities as high as 93% of critical velocity of individuals. The data show that under these conditions the rate of production of lactate by white muscle, at less than critical velocities, is minimal or that the rate of elimination of lactate from white muscle is equal to its rate of utilization elsewhere. Immediately following fatigue blood lactate level increases rapidly. During the recovery period there appears to be a net uptake of lactate by the gills.


Retos ◽  
2018 ◽  
pp. 221-223
Author(s):  
Jorge Alberto Aburto Corona ◽  
Tatiana Miranda Núñez ◽  
Alicia Bárcenas Ugalde ◽  
Roberto Espinoza Gutiérrez ◽  
Emilio Manuel Arrayales Millán

El objetivo de este estudio fue determinar si la resistencia aeróbica y la concentración de lactato en sangre, pueden ser influenciados por la privación parcial o total del sueño en un grupo de deportistas. Se reclutaron 13 deportistas masculinos (21.8 ± 2.9 años de edad) los cuales fueron sometidos a tres condiciones experimentales: dormir cuatro horas (D4H), no dormir (0H) y una condición contol de dormir ocho horas (D8H). No se encontraron diferencias estadísticamente significativas en la resistencia aeróbica (p=.845). De la misma manera, no se halló diferencia significativa en la concentración de lactato en sangre (p>.05). Estos resultados señalan que la privación parcial (dormir cuatro horas) o total (no dormir) del sueño, previo a una prueba física, no es un factor que influya en el rendimiento aeróbico ni en la concentración de lactato en sangre en comparación a la cantidad de horas de sueño recomendadas (dormir ocho horas).Abstract. The purpose of this study was to determinate if aerobic performance and blood lactate concentration are influenced by partial or total sleep deprivation. Thirteen male athletes (age: 21.8 ± 2.9 y.o) were randomly assigned to three experimental conditions: sleep four hours (D4H), no sleep (0H), and sleep eigth hours (D8H, control group). No significant difference was found in the aerobic performance (p=.845). Similarly, there was no sifnificant difference in blood lactate concentration (p>.05). This results suggest that partial (sleep four hours) or total (no sleep) sleep deprivation before a physical test are not a factor influencing aerobic performance or blood lactate concentration compared to the amount of recommended hours of sleep (sleep eight hours).


1994 ◽  
Vol 76 (2) ◽  
pp. 846-852 ◽  
Author(s):  
C. Duan ◽  
W. W. Winder

Endurance training attenuates exercise-induced increases in blood lactate at the same submaximal work rate. Three intramuscular compounds that influence muscle lactate production were measured in fasted non-trained (NT) and endurance-trained (T) rats. The T rats were subjected to a progressive endurance-training program. At the end of the program (11 wk), they were running 2 h/day at 31 m/min up a 15% grade 5 days/wk. NT and T rats were fasted for 24 h and then anesthetized (pentobarbital, iv) at rest or after running for 30 min at 21 m/min (15% grade). Blood lactate levels were significantly lower in the T rats than in the NT rats after 30 min of running (2.3 +/- 0.2 vs. 3.9 +/- 0.2 mM). The lower blood lactate concentration was accompanied by lower plasma epinephrine (2.8 +/- 0.4 vs. 6.0 +/- 0.8 nM), adenosine 3′, 3′,5′-cyclic monophosphate (0.36 +/- 0.02 vs. 0.50 +/- 0.03 pmol/mg), mg), glucose 1,6-diphosphate (26 +/- 2 vs. 40 +/- 5 pmol/mg), and fructose 2,6-diphosphate (3.2 +/- 0.2 vs. 4.3 +/- 0.3 pmol/mg) in white quadriceps muscle in T than in NT rats. Red quadriceps muscle glucose 1,6-diphosphate and adenosine 3′,5′-cyclic monophosphate were also lower in T than in NT rats. These adaptations may be responsible in part for the lower exercise-induced blood lactate in fasted rats as a consequence of endurance training.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_4) ◽  
Author(s):  
Anil Gulati ◽  
Rajat Choudhuri ◽  
Ajay Gupta ◽  
Saurabh Singh ◽  
S. K. Noushad Ali ◽  
...  

Background: Centhaquine (CQ) is a novel, first-in-class resuscitative agent for the treatment of hypovolemic shock. Methods: Efficacy of CQ for the treatment of hypovolemic shock as an adjuvant to standard of care (SOC) was evaluated in a prospective, multi-center, randomized, double-blind, placebo-controlled Phase 3 study. Key inclusion criteria were; systolic blood pressure of <90 mm Hg, blood lactate levels of > 2 mmol/L and patients receiving SOC in a hospital or ICU setting. Patients were randomized in a 2:1 ratio either to the CQ group receiving CQ dose of 0.01 mg/kg by IV infusion along with SOC or to the control group receiving SOC plus saline. Primary endpoints of the study were change in systolic blood pressure (SBP) and diastolic blood pressure (DBP), change in blood lactate levels and change in base deficit. Mortality through day 28 was the key secondary endpoint. Results: A total of 197 patients were screened, of which 105 patients met the eligibility criteria and were included in the study. Out of 105 patients, 71 patients were randomized to CQ group and 34 patients to control group. Demographics and baseline characteristics of patients in both groups was comparable. Hemoglobin level was 9.38 ± 0.71 g/dL and 8.73 ± 0.55 g/dL in control and CQ groups, respectively at the time of inclusion in the study. At 24 hours of resuscitation, SBP of more than 110 mmHg was in 59.38% patients of control and 81.82% patients of CQ group (P=0.00842). Similarly, at 24 hours of resuscitation, DBP of more than 70 mmHg was in 50.00% patients in control group and 78.46% patients in CQ group (P=0.002175). The number of patients with blood lactate levels of 1.5 mmol/L or less were 46.88% in the group with standard treatment compared to 69.35% in CQ group (P=0.0168). The number of patients with base-deficit of less than minus 2 were 46.88% in standard treatment group compared to 68.25% in those receiving CQ (P=0.0217). CQ treatment significantly reduced the mortality rate. In the control group, the mortality rate was 11.76% compared to 2.94% in the CQ group (odds ratio: 4.4; 95% CI 0.9651 to 23.74 and P=0.037). No drug related adverse event was reported. Conclusion: Centhaquine (Lyfaquin®) is a highly efficacious resuscitative agent for the treatment of hypovolemic shock as an adjuvant to SOC.


2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Amanda Boag

<p>Blood lactate levels are a simple and inexpensive parameter that is increasingly available to practitioners in both emergency medicine and general practice. But what does it really tell us? The earliest studies in people dating from the 1970s were the first to advocate lactate as a prognostic indicator with one of the landmark studies showing that as admission lactate concentration increased from 2.1 to 8.0 mmol/L survival decreased from 90% to 10%. When treating emergency patients with distressed owners, there is something very attractive about the idea of measuring a simple parameter on admission that could give us a better sense of prognosis than our clinical opinion alone... But does the data support that? In this session we will briefly review lactate physiology and then focus on the small animal veterinary evidence base – how has it evolved, what do we now know and where are the gaps in knowledge and potential misinterpretations that could affect our use of this clinical tool.</p><p> </p><img src="https://www.veterinaryevidence.org/rcvskmod/icons/oa-icon.jpg" alt="Open Access" />


Author(s):  
B. Zakarevičiūtė ◽  
D. Juodžentė ◽  
B. Karvelienė ◽  
S. Čechovičienė ◽  
V. Riškevičienė

Background: A blood transfusion is a routine, life-saving procedure used to replace blood cells or blood products. The current study was aimed to assess whether the blood lactate concentration has a prognostic value of successful blood transfusion.Methods: During the period 2018-2019 group I dogs (n=19) received whole blood transfusion and twenty dogs were assigned to the control group (group II). Blood samples in group I were obtained from cephalic vein before blood transfusion (T0), then after it was finished (4hr±20 min) (T1) and 24hr±20 min after the T0 (T2).Result: The level of blood lactate reached the normal level after blood transfusion in T1 and T2. The clearance of lactate had a moderate negative correlation with packed cell volume (PCV) and red blood cells (RBC). There was no significant correlation between survival rate and blood lactate level. The survivals 24hr after transfusion (T2) had five times higher count of reticulocytes (RETIC) then non-survivals. Serial blood lactate measurement can improve the prediction of successful blood transfusion and it is useful in monitoring the patient status 24hr post blood transfusion, but it doesn’t have the predictive value of survival.


Sign in / Sign up

Export Citation Format

Share Document