The Effects of High-Intensity Interval Training in Well-Trained Rowers

2009 ◽  
Vol 4 (1) ◽  
pp. 110-121 ◽  
Author(s):  
Matthew W. Driller ◽  
James W. Fell ◽  
John R. Gregory ◽  
Cecilia M. Shing ◽  
Andrew D. Williams

Purpose:Several recent studies have reported substantial performance and physiological gains in well-trained endurance runners, swimmers, and cyclists following a period of high-intensity interval training (HIT). The aim of the current study was to compare traditional rowing training (CT) to HIT in well-trained rowers.Methods:Subjects included 5 male and 5 female rowers (mean ± SD; age = 19 ± 2 y; height = 176 ± 8 cm; mass = 73.7 ± 9.8 kg; Vo2peak = 4.37 ± 1.08 L·min−1). Baseline testing included a 2000-m time trial and a maximal exercise test to determine Vo2peak, 4-min all-out power, and 4 mmol·L−1 blood lactate threshold. Following baseline testing, rowers were randomly allocated to HIT or CT, which they performed seven times over a 4-wk period. The HIT involved 8 × 2.5-min intervals at 90% of the velocity maintained at Vo2peak, with individual recoveries returning to 70% of the subjects’ maximal heart rate between intervals. The CT intensity consisted of workloads corresponding to 2 and 3 mmol·L−1 blood lactate concentrations. On completion of HIT or CT, rowers repeated the testing performed at baseline and were then allocated to the alternative training program and completed a crossover trial.Results:HIT produced greater improvements in 2000-m time (1.9 ± 0.9%; mean ± SD), 2000-m power (5.8 ± 3.0%), and relative Vo2peak (7.0 ± 6.4%) than CT.Conclusion:Four weeks of HIT improves 2000-m time-trial performance and relative Vo2peak in competitive rowers, more than a traditional approach.

Sports ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 34
Author(s):  
Laura Hottenrott ◽  
Martin Möhle ◽  
Alexander Ide ◽  
Sascha Ketelhut ◽  
Oliver Stoll ◽  
...  

Due to physiological and anatomical sex differences, there are variations in the training response, and the recovery periods following exercise may be different. High-intensity interval training (HIIT) protocols are well-suited to differentially investigate the course of recovery. This study was conducted to determine sex-specific differences in the recovery following HIIT intervals interspersed with recovery phases of different lengths. Methods: Well-trained cyclists and triathletes (n = 11 females, n = 11 males) participated in this study. There were no significant sex differences in maximal heart rate (HR), relative peak power to body mass and fat-free mass, training volume, and VO2max-percentiles (females: 91.8 ± 5.5 %, males: 94.6 ± 5.4 %). A 30 s Wingate test was performed four times, separated by different active recovery periods (1, 3, or 10 min). Lactate, HR, oxygen uptake, and subjective rating of exertion and recovery were determined. Results: For the recovery time of three and ten minutes, men showed significantly higher lactate concentrations (p = 0.04, p = 0.004). Contrary, HR recovery and subjective recovery were significant slower in women than in men. Conclusion: During HIIT, women may be more resistant to fatigue and have a greater ability to recover metabolically, but have a slower HR and subjective recovery.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9791
Author(s):  
Gabriel V. Protzen ◽  
Charles Bartel ◽  
Victor S. Coswig ◽  
Paulo Gentil ◽  
Fabricio B. Del Vecchio

Background One of the most popular high-intensity interval exercises is the called “Tabata Protocol”. However, most investigations have limitations in describing the work intensity, and this fact appears to be due to the protocol unfeasibility. Furthermore, the physiological demands and energetic contribution during this kind of exercise remain unclear. Methods Eight physically active students (21.8 ± 3.7 years) and eight well-trained cycling athletes (27.8 ± 6.4 years) were enrolled. In the first visit, we collected descriptive data and the peak power output (PPO). On the next three visits, in random order, participants performed interval training with the same time structure (effort:rest 20s:10s) but using different intensities (115%, 130%, and 170% of PPO). We collected the number of sprints, power output, oxygen consumption, blood lactate, and heart rate. Results The analysis of variance for multivariate test (number of sprints, power output, blood lactate, peak heart rate and percentage of maximal heart rate) showed significant differences between groups (F = 9.62; p = 0.001) and intensities (F = 384.05; p < 0.001), with no interactions (F = 0.94; p = 0.57). All three energetic contributions and intensities were different between protocols. The higher contribution was aerobic, followed by alactic and lactic. The aerobic contribution was higher at 115%PPO, while the alactic system showed higher contribution at 130%PPO. In conclusion, the aerobic system was predominant in the three exercise protocols, and we observed a higher contribution at lower intensities.


2018 ◽  
Vol 118 (9) ◽  
pp. 1811-1820 ◽  
Author(s):  
Todd A. Astorino ◽  
Jamie deRevere ◽  
Theodore Anderson ◽  
Erin Kellogg ◽  
Patrick Holstrom ◽  
...  

Author(s):  
Christopher R. J. Fennell ◽  
James G. Hopker

Abstract Purpose The current study sought to investigate the role of recovery intensity on the physiological and perceptual responses during cycling-based aerobic high-intensity interval training. Methods Fourteen well-trained cyclists ($$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak : 62 ± 9 mL kg−1 min−1) completed seven laboratory visits. At visit 1, the participants’ peak oxygen consumption ($$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak ) and lactate thresholds were determined. At visits 2–7, participants completed either a 6 × 4 min or 3 × 8 min high-intensity interval training (HIIT) protocol with one of three recovery intensity prescriptions: passive (PA) recovery, active recovery at 80% of lactate threshold (80A) or active recovery at 110% of lactate threshold (110A). Results The time spent at > 80%, > 90% and > 95% of maximal minute power during the work intervals was significantly increased with PA recovery, when compared to both 80A and 110A, during both HIIT protocols (all P ≤ 0.001). However, recovery intensity had no effect on the time spent at > 90% $$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak (P = 0.11) or > 95% $$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak (P = 0.50) during the work intervals of both HIIT protocols. Session RPE was significantly higher following the 110A recovery, when compared to the PA and 80A recovery during both HIIT protocols (P < 0.001). Conclusion Passive recovery facilitates a higher work interval PO and similar internal stress for a lower sRPE when compared to active recovery and therefore may be the efficacious recovery intensity prescription.


Author(s):  
Todd A. Astorino ◽  
Jamie L. DeRevere ◽  
Theodore Anderson ◽  
Erin Kellogg ◽  
Patrick Holstrom ◽  
...  

Background: There is individual responsiveness to exercise training as not all individuals experience increases in maximal oxygen uptake (VO2max), which does not benefit health status considering the association between VO2max and mortality. Approximately 50% of the training response is genetic, with the other 50% accounted for by variations in dietary intake, sleep, recovery, and the metabolic stress of training. This study examined if the blood lactate (BLa) response to high intensity interval training (HIIT) as well as habitual dietary intake and sleep duration are associated with the resultant change in VO2max (ΔVO2max). Methods: Fourteen individuals (age and VO2max = 27 ± 8 years and 38 ± 4 mL/kg/min, respectively) performed nine sessions of HIIT at 130% ventilatory threshold. BLa was measured during the first and last session of training. In addition, sleep duration and energy intake were assessed. Results: Data showed that VO2max increased with HIIT (p = 0.007). No associations occurred between ΔVO2max and BLa (r = 0.44, p = 0.10), energy intake (r = 0.38, p = 0.18), or sleep duration (r = 0.14, p = 0.62). However, there was a significant association between training heart rate (HR) and ΔVO2max (r = 0.62, p = 0.02). Conclusions: When HIIT is prescribed according to a metabolic threshold, energy intake, sleep status, and BLa do not predict ΔVO2max, yet the HR response to training is associated with the ΔVO2max.


2020 ◽  
Author(s):  
Matheus Silva Norberto ◽  
TARINE BOTTA DE ARRUDA ◽  
VITOR LUIS DE ANDRADE ◽  
JONATAS AUGUSTO CURSIOL ◽  
GUSTAVO GOMES DE ARAUJO ◽  
...  

Abstract BACKGROUND: Metformin has shown potential to improve metabolic efficiency in short-intense efforts, prolonged-continuous efforts and recovery after supramaximal effort (i.e., phosphocreatine resynthesis). Metformin administration may be beneficial for high-intensity interval training session. The aim of the present study was to investigate the acute metformin administration effects on performance, rating of perceived exertion (RPE), blood lactate, blood glucose and neuromuscular parameters related to a swimming series of high-intensity.METHODS: A double-blind, cross-over, randomized and placebo-controlled study was carried out. Seven healthy swimmers ingested MET (500mg) or placebo capsule on different days and performed a typical glycolytic session of high-intensity (i.e., lactate production objective). Bout time, RPE, neuromuscular parameters, blood lactate and glucose were analyzed. Cohen’s d analysis with inference based on magnitude was adopted (confidence interval set at 90%).RESULTS: There was an improvement in the performance of the second effort (72/28/0). Blood glucose during the series presented possible effects for decrease (96/3/1, 78/21/0, 93/6/1 after the 4th, 6th and 8th effort respectively) followed by a possible increase effect at the end of the series (1/6/93).Blood lactate showed a similar behavior of a possible decrease during the series (94/5/1, 60/40/0, 90/9/1 after the 4th, 6th and 8th effort respectively), followed by a possible increase effect at the end of the series (1/5/94). It was evidenced a possible increase effect on voluntary activation for lower limbs (91/8/1) without characterization of central and peripheral fatigue.CONCLUSION: Metformin alters physiological parameters during and after maximal intermittent efforts in swimming without enhancement on performance.


2017 ◽  
Vol 6 (2) ◽  
pp. 27-33
Author(s):  
BAHAR ATEŞ ◽  
Ebru ÇETİN

The purpose of this study was to investigate the 8-week of roller-ski aerobic high-intensity interval training on aerobic and anaerobic power in cross-country skiers. 10 male [age, 18,28±2,1 years; height, 171,26±4,12 cm; weight, 61,39±6,28 kg] and 8 female [age, 16,05±0.3 years; height, 158,3±6,47 cm; weight, 49,34±0.7 kg]  junior cross-country skiers completed the study. All skiers performed 2x2-km all-out uphill intervals with roller-skis, 3 times a week, in addition to their traditional training program. Measurements included VO2max, anaerobic power, and also for 2-km time-trial performance. All values were listed as pre-to post-test mean [±SD], significant level, and percentage changes [%]. Pre-to post-testing changes in VO2max, anaerobic power, and also 2-km time-trial performance were significantly higher during all post-test trials in all groups [p<0.005]. As a result, we suggest that the skiers should integrate the roller-ski aerobic high-intensity interval uphill models in their training programs for improving performance.


Sign in / Sign up

Export Citation Format

Share Document