Interactive Effects of Mass Proportions and Coupling Properties on External Loading in Simulated Forefoot Impact Landings

2009 ◽  
Vol 25 (3) ◽  
pp. 238-246 ◽  
Author(s):  
Marianne J. R. Gittoes ◽  
David G. Kerwin

This study aimed to gain insight into the individual and interactive effects of segmental mass proportions and coupling properties on external loading in simulated forefoot landings. An evaluated four-segment wobbling mass model replicated forefoot drop landings (height: 0.46 m) performed by two subjects. A comparison of the peak impact forces (GFzmax) produced during the evaluated landing and further simulated landings performed using modified (±5% perturbation) mass proportions and coupling properties was made. Independent segmental mass proportion changes, particularly in the upper body, produced a prominent change in GFzmax of up to 0.32 bodyweight (BW) whereas independent mass coupling stiffness and damping alterations had less effect on GFzmax (change in GFzmax of up to 0.18 BW). When combining rigid mass proportion reductions with damping modifications, an additional GFzmax attenuation of up to 0.13 BW was produced. An individual may be predisposed to high loading and traumatic and overuse injury during forefoot landings owing to their inherent inertia profile. Subject-specific neuromuscular modifications to mass coupling properties may not be beneficial in overriding the increased forces associated with larger rigid mass proportions.

Author(s):  
Jinbao Zhang ◽  
Jaeyoung Lee

Abstract This study has two main objectives: (i) to analyse the effect of travel characteristics on the spreading of disease, and (ii) to determine the effect of COVID-19 on travel behaviour at the individual level. First, the study analyses the effect of passenger volume and the proportions of different modes of travel on the spread of COVID-19 in the early stage. The developed spatial autoregressive model shows that total passenger volume and proportions of air and railway passenger volumes are positively associated with the cumulative confirmed cases. Second, a questionnaire is analysed to determine changes in travel behaviour after COVID-19. The results indicate that the number of total trips considerably decreased. Public transport usage decreased by 20.5%, while private car usage increased by 6.4%. Then the factors affecting the changes in travel behaviour are analysed by logit models. The findings reveal significant factors, including gender, occupation and travel restriction. It is expected that the findings from this study would be helpful for management and control of traffic during a pandemic.


2013 ◽  
Vol 796 ◽  
pp. 513-518
Author(s):  
Rong Jin ◽  
Bing Fei Gu ◽  
Guo Lian Liu

In this paper 110 female undergraduates in Soochow University are measured by using 3D non-contact measurement system and manual measurement. 3D point cloud data of human body is taken as research objects by using anti-engineering software, and secondary development of point cloud data is done on the basis of optimizing point cloud data. In accordance with the definition of the human chest width points and other feature points, and in the operability of the three-dimensional point cloud data, the width, thickness, and length dimensions of the curve through the chest width point are measured. Classification of body type is done by choosing the ratio values as classification index which is the ratio between thickness and width of the curve. The generation rules of the chest curve are determined for each type by using linear regression method. Human arm model could be established by the computer automatically. Thereby the individual model of the female upper body mannequin modeling can be improved effectively.


Author(s):  
C. Nataraj

Abstract A single link robotic manipulator is modeled as a rotating flexible beam with a rigid mass at the tip and accurate energy expressions are derived. The resulting partial differential equations are solved using an approximate method of weighted residuals. From the solutions, coupling between axial and flexural deformations and the interactions with rigid body motions are rigorously analyzed. The emphasis in the current paper is not on an exhaustive analysis of existing systems but it is rather intended to compare and highlight the various flexibility effects in a relatively simple system. Hence, a nondimensional parametric analysis is performed to determine the effect of several parameters (including the rotating speed) on the errors and the individual interaction effects are discussed. Comparison with previous work in the field shows important phenomena often ignored or buried in large scale numerical analyses. Future work including application to multi-link robots is outlined.


2005 ◽  
Vol 128 (1) ◽  
pp. 219-229 ◽  
Author(s):  
Shyy Woei Chang ◽  
Yao Zheng

This paper describes an experimental study of heat transfer in a reciprocating planar curved tube that simulates a cooling passage in piston. The coupled inertial, centrifugal, and reciprocating forces in the reciprocating curved tube interact with buoyancy to exhibit a synergistic effect on heat transfer. For the present experimental conditions, the local Nusselt numbers in the reciprocating curved tube are in the range of 0.6–1.15 times of static tube levels. Without buoyancy interaction, the coupled reciprocating and centrifugal force effect causes the heat transfer to be initially reduced from the static level but recovered when the reciprocating force is further increased. Heat transfer improvement and impediment could be superimposed by the location-dependent buoyancy effect. The empirical heat transfer correlation has been developed to permit the evaluation of the individual and interactive effects of inertial, centrifugal, and reciprocating forces with and without buoyancy interaction on local heat transfer in a reciprocating planar curved tube.


2016 ◽  
Vol 81 (8) ◽  
pp. 947-958 ◽  
Author(s):  
Zlate Velickovic ◽  
Negovan Ivankovic ◽  
Vanja Strikovic ◽  
Radovan Karkalic ◽  
Dalibor Jovanovic ◽  
...  

The aim of this study was to determine soil properties influence on the heavy metals sorption by vegetables which are used in the diet and possibilities for prediction of their bioaccumulation by response surface methodology (RSM). Lettuce was used as biosorbent, and cadmium (Cd) and lead (Pb) were used as contaminants. Lettuce is grown on compost (previously contaminated with different concentrations of Cd and Pb) which pH was adjusted with different amounts of NPK fertilizers. The content of heavy metals was determined by ICP-MS. Results showed that Cd content in lettuce was below the toxic values, but Pb concentration was above allowable, which indicates that limit value for Pb is not set in accordance with the food safety regulations. It was found that the heavy metals accumulation in plants depends not only on its content in the soil, but also on the plant affinity to the specific metal, and the individual or the interactive effects of different soil properties. Through the transfer factor it was found that lettuce has a much higher affinity to Cd in relation to Pb. RSM has proved to be very good for the examination of a large number of variables with a small number of experiments.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1483
Author(s):  
Pablo Salgado ◽  
José Luis Frontela ◽  
Gladys Vidal

In this work, the Fenton technology was applied to decolorize methylene blue (MB) and to inactivate Escherichia coli K12, used as recalcitrant compound and bacteria models respectively, in order to provide an approach into single and combinative effects of the main process variables influencing the Fenton technology. First, Box–Behnken design (BBD) was applied to evaluate and optimize the individual and interactive effects of three process parameters, namely Fe2+ concentration (6.0 × 10−4, 8.0 × 10−4 and 1.0 × 10−3 mol/L), molar ratio between H2O2 and Fe2+ (1:1, 2:1 and 3:1) and pH (3.0, 4.0 and 5.0) for Fenton technology. The responses studied in these models were the degree of MB decolorization (D%MB), rate constant of MB decolorization (kappMB) and E. coli K12 inactivation in uLog units (IuLogEC). According to the results of analysis of variances all of the proposed models were adequate with a high regression coefficient (R2 from 0.9911 to 0.9994). BBD results suggest that [H2O2]/[Fe2+] values had a significant effect only on D%MB response, [Fe2+] had a significant effect on all the responses, whereas pH had a significant effect on D%MB and IuLogEC. The optimum conditions obtained from response surface methodology for D%MB ([H2O2]/[Fe2+] = 2.9, [Fe2+] = 1.0 × 10−3 mol/L and pH = 3.2), kappMB ([H2O2]/[Fe2+] = 1.7, [Fe2+] = 1.0 × 10−3 mol/L and PH = 3.7) and IuLogEC ([H2O2]/[Fe2+] = 2.9, [Fe2+] = 7.6 × 10−4 mol/L and pH= 3.2) were in good agreement with the values predicted by the model.


2010 ◽  
Vol 42 ◽  
pp. 786
Author(s):  
Mario Inacio ◽  
Loretta Dipietro ◽  
Amanda Visek ◽  
Todd Miller

2018 ◽  
Vol 43 (5) ◽  
pp. 504-509 ◽  
Author(s):  
JohnEric W. Smith ◽  
Ben M. Krings ◽  
Brandon D. Shepherd ◽  
Hunter S. Waldman ◽  
Steven A. Basham ◽  
...  

The purpose of this investigation was to examine the individual and combined effects of ingesting carbohydrates (CHO) and branched-chain amino acids (BCAA) during high-volume upper body resistance exercise (RE) on markers of catabolism and performance. Thirteen resistance-trained males completed 4 experimental trials with supplementation, ingesting beverages containing CHO, BCAA, CHO+BCAA, or placebo (PLA) in a randomized, double-blind design. The beverages were ingested in 118-mL servings 6 times during an ∼60-min RE session consisting of bench press, bent-over row, incline press, and close-grip row. Each RE was performed with 5 sets of repetitions at 65% 1-repetition maximum until volitional fatigue. Blood samples were collected at baseline, immediately postexercise, and 60 min postexercise to assess glucose and insulin. Cortisol was assessed immediately and at 60 min postexercise. No significant performance benefits were observed for any RE. CHO+BCAA (152.4 ± 71.4 ng/mL) resulted in the lowest cortisol levels, which was lower than BCAA and PLA (193.7 ± 88.5, 182.8 ± 67.5 ng/mL, p < 0.05), but not different from CHO (165 ± 76.5 ng/mL, p = 0.342). Postexercise insulin concentrations were significantly higher with CHO (4.79 ± 3.4 mU/L) compared with BCAA and PLA (3.7 ± 2.0, 3.5 ± 1.8 mU/L, p < 0.05), but not different from CHO+BCAA (4.3 ± 2.5 mU/L, p = 0.339). There was no treatment effect for glucose, but glucose significantly increased from baseline to immediately postexercise and significantly decreased at 60 min postexercise. Ingesting beverages containing CHO with or without BCAA during upper body resistance exercise may promote a more favorable postexercise less catabolic environment.


1992 ◽  
Vol 59 (4) ◽  
pp. 946-954
Author(s):  
H.-Y. Huang ◽  
A. L. Schlack

A general method of analysis based on Liapunov’s direct method is presented for studying the dynamic stability of elastic shaft-rigid disk-bearing systems. A model comprised of a rigid disk rigidly attached at an arbitrary location along a flexible, rotating shaft which is mounted on two eight-component end bearings is used to develop stability criteria involving system stiffness and damping parameters. It is quantitatively shown by means of graphs for typical cases how the instability regions are reduced by (a) increasing the shaft dimensionless stiffness parameters, (b) increasing the bearing direct stiffness and damping parameters, (c) decreasing the bearing cross-coupling stiffness and damping parameters, (d) decreasing the mass ratio of the disk, and (e) increasing the disk’s radius ratio. These graphs present typical examples of the types of design information available to engineers through the equations provided in this paper. These graphs also verify that a two-modal term (N = 2) expansion is normally adequate to model the system deformations since the curves are not significantly altered by adding another term (N = 3) to the expansion. The critical value of the shaft dimensionless stiffness parameters is also studied.


Sign in / Sign up

Export Citation Format

Share Document