scholarly journals Next-Generation Low-Cost Motion Capture Systems Can Provide Comparable Spatial Accuracy to High-End Systems

2013 ◽  
Vol 29 (1) ◽  
pp. 112-117 ◽  
Author(s):  
Dominic Thewlis ◽  
Chris Bishop ◽  
Nathan Daniell ◽  
Gunther Paul

The objective quantification of three-dimensional kinematics during different functional and occupational tasks is now more in demand than ever. The introduction of new generation of low-cost passive motion capture systems from a number of manufacturers has made this technology accessible for teaching, clinical practice and in small/medium industry. Despite the attractive nature of these systems, their accuracy remains unproved in independent tests. We assessed static linear accuracy, dynamic linear accuracy and compared gait kinematics from a Vicon MX-f20 system to a Natural Point OptiTrack system. In all experiments data were sampled simultaneously. We identified both systems perform excellently in linear accuracy tests with absolute errors not exceeding 1%. In gait data there was again strong agreement between the two systems in sagittal and coronal plane kinematics. Transverse plane kinematics differed by up to 3° at the knee and hip, which we attributed to the impact of soft tissue artifact accelerations on the data. We suggest that low-cost systems are comparably accurate to their high-end competitors and offer a platform with accuracy acceptable in research for laboratories with a limited budget.

Author(s):  
Pyeong-Gook Jung ◽  
Sehoon Oh ◽  
Gukchan Lim ◽  
Kyoungchul Kong

Motion capture systems play an important role in health-care and sport-training systems. In particular, there exists a great demand on a mobile motion capture system that enables people to monitor their health condition and to practice sport postures anywhere at any time. The motion capture systems with infrared or vision cameras, however, require a special setting, which hinders their application to a mobile system. In this paper, a mobile three-dimensional motion capture system is developed based on inertial sensors and smart shoes. Sensor signals are measured and processed by a mobile computer; thus, the proposed system enables the analysis and diagnosis of postures during outdoor sports, as well as indoor activities. The measured signals are transformed into quaternion to avoid the Gimbal lock effect. In order to improve the precision of the proposed motion capture system in an open and outdoor space, a frequency-adaptive sensor fusion method and a kinematic model are utilized to construct the whole body motion in real-time. The reference point is continuously updated by smart shoes that measure the ground reaction forces.


2018 ◽  
Vol 52 (25) ◽  
pp. 3429-3444 ◽  
Author(s):  
Ezequiel Buenrostro ◽  
Daniel Whisler

Three-dimensional fiber-reinforced foam cores may have improved mechanical properties under specific strain rates and fiber volumes. But its performance as a core in a composite sandwich structure has not been fully investigated. This study explored different manufacturing techniques for the three-dimensional fiber-reinforced foam core using existing literature as a guideline to provide a proof of concept for a low-cost and easily repeatable method comprised of readily available materials. The mechanical properties of the fiber-reinforced foam were determined using a three-point bend test and compared to unreinforced polyurethane foam. The foam was then used in a sandwich panel and subjected to dynamic loading by means of a gas gun (103 s−1). High-strain impact tests validated previously published studies by showing, qualitatively and quantitatively, an 18–20% reduction in the maximum force experienced by the fiber-reinforced core and its ability to dissipate the impact force in the foam core sandwich panel. The results show potential for this cost-effective manufacturing method to produce an improved composite foam core sandwich panel for applications where high-velocity impacts are probable. This has the potential to reduce manufacturing and operating costs while improving performance.


2017 ◽  
Vol 23 (6) ◽  
pp. 1020-1031 ◽  
Author(s):  
Miguel Fernandez-Vicente ◽  
Ana Escario Chust ◽  
Andres Conejero

Purpose The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for clinical practitioners and orthotic technicians alike. It further functions to reduce the dependency of the operators’ abilities and skills. Design/methodology/approach The technical assessment covers low-cost three-dimensional (3D) scanning, free computer-aided design (CAD) software, and desktop 3D printing and acetone vapour finishing. To analyse its viability, a cost comparison was carried out between the proposed workflow and the traditional CMIO manufacture method. Findings The results show that the proposed workflow is a technically feasible and cost-effective solution to improve upon the traditional process of design and manufacture of custom-made static trapeziometacarpal (TMC) orthoses. Further studies are needed for ensuring a clinically feasible approach and for estimating the efficacy of the method for the recovery process in patients. Social implications The feasibility of the process increases the impact of the study, as the great accessibility to this type of 3D printers makes the digital fabrication method easier to be adopted by operators. Originality/value Although some research has been conducted on digital fabrication of CMIO, few studies have investigated the use of desktop 3D printing in any systematic way. This study provides a first step in the exploration of a new design workflow using low-cost digital fabrication tools combined with non-manual finishing.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1750
Author(s):  
Amartya Ganguly ◽  
Gabriel Rashidi ◽  
Katja Mombaur

Over the last few years, the Leap Motion Controller™ (LMC) has been increasingly used in clinical environments to track hand, wrist and forearm positions as an alternative to the gold-standard motion capture systems. Since the LMC is marker-less, portable, easy-to-use and low-cost, it is rapidly being adopted in healthcare services. This paper demonstrates the comparison of finger kinematic data between the LMC and a gold-standard marker-based motion capture system, Qualisys Track Manager (QTM). Both systems were time synchronised, and the participants performed abduction/adduction of the thumb and flexion/extension movements of all fingers. The LMC and QTM were compared in both static measuring finger segment lengths and dynamic flexion movements of all fingers. A Bland–Altman plot was used to demonstrate the performance of the LMC versus QTM with Pearson’s correlation (r) to demonstrate trends in the data. Only the proximal interphalangeal joint (PIP) joint of the middle and ring finger during flexion/extension demonstrated acceptable agreement (r = 0.9062; r = 0.8978), but with a high mean bias. In conclusion, the study shows that currently, the LMC is not suitable to replace gold-standard motion capture systems in clinical settings. Further studies should be conducted to validate the performance of the LMC as it is updated and upgraded.


Ergonomics ◽  
2015 ◽  
Vol 59 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Alfredo Patrizi ◽  
Ettore Pennestrì ◽  
Pier Paolo Valentini

2018 ◽  
Vol 11 (4) ◽  
pp. 313-325
Author(s):  
Farshad Zamiri ◽  
Abdolreza Nabavi

AbstractMicrowave holography technique reconstructs a target image using recorded amplitudes and phases of the signals reflected from the target with Fast Fourier Transform (FFT)-based algorithms. The reconstruction algorithms have two or more steps of two- and three-dimensional Fourier transforms, which have a high computational load. In this paper, by neglecting the impact of target depth on image reconstruction, an efficient Fresnel-based algorithm is proposed, involving only one-step FFT for both single- and multi-frequency microwave imaging. Numerous tests have been performed to show the effectiveness of the proposed algorithm including planar and non-planar targets, using the raw data gathered by means of a scanner operating in X-band. Finally, a low-cost and high-speed hardware architecture based on fixed-point arithmetic is introduced which reconstructs the planar targets. This pipeline architecture was tested on field programmable gate arrays operating at 200 MHz clock frequency, which illustrates more than 30 times improvement in computation time compared with a computer.


2020 ◽  
Author(s):  
Dorina Camelia Ilies ◽  
Tudor Caciora ◽  
Grigore Vasile Herman ◽  
Alexandru Ilies ◽  
Madalina Ropa ◽  
...  

Abstract The impact that geohazards have on cultural heritage requires continuous research in order to assess risks, prevention and conservation. This study has as the main research object, a uniquen monument in terms of its connection with the risk phenomena. It is about a wooden church historical monument from the village of Corbești, Romania, which was destroyed at the beginning of the tenth decade of the last century by a meteorological hazard, later reconstructed on a new site (in Oradea Municipality), and currently there is a risk of being affected by a geological hazard. The study focused on three main directions of research, namely: reconstructing the film of events, analyzing current risks and finding viable methods for future conservation and promotion. The methodology is based on extensive field research and the use of digital technologies. The results obtained confirmed the church's tendency to be affected by the emergence of a new risk phenomenon - landslides. In order to conserve and rebuild in case of need, the monument was digitized and a three-dimensional model of high accuracy was developed. This approach has the advantage of being low-cost, fast, non-invasive and providing large volumes of valuable information in the process of cultural heritage conservation.


Author(s):  
Andrea Vitali ◽  
Daniele Regazzoni ◽  
Caterina Rizzi ◽  
Giorgio Lupi

Abstract In the last years, the advent of low-cost markerless motion capture systems fostered their use in several research fields, such as healthcare and sport. Any system presents benefits and drawbacks that have to be considered to design a Mocap solution providing a proper motion acquisition for a specific context. In order to evaluate low-cost technology, this research work focuses on the evaluation of the accuracy of two categories of devices: the RGB active cameras and the RGB-D, or depth sensors devices. In particular, GoPro Hero 6 active cameras and Microsoft Kinect v2 devices have been selected as representative of the two categories. In particular, this work evaluates and compares the performances of the two systems used to track the position of human articulations. The two devices have been chosen among those available on the market after a state of the art has been completed. Before starting with the campaign of acquisition, the number of sensors and their layout have been designed to optimize the acquisition with both mark-less Mocap systems. Their comparison is based on a list of specific movements of upper and lower limbs. Each movement has been acquired simultaneously, to guarantee the same test conditions. The results have been organized, compared and discussed by evaluating performances and limitations of both solutions related to specific context of use. Conclusions highlight the best candidate technology.


2012 ◽  
Vol 15 (sup1) ◽  
pp. 253-255 ◽  
Author(s):  
Clint Hansen ◽  
Jean-Louis Honeine ◽  
David Gibas ◽  
Nasser Rezzoug ◽  
Philippe Gorce ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document