The Effects of a Multimodal Rehabilitation Program on Symptoms and Ground-Reaction Forces in Runners With Patellofemoral Pain Syndrome

2016 ◽  
Vol 25 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Jean-Francois Esculier ◽  
Laurent J. Bouyer ◽  
Jean-Sébastien Roy

Context:Patellofemoral pain (PFP) is one of the most frequent running-related injuries. However, few interventions taking into consideration the specificity of running have been shown to be effective in runners with PFP.Objective:To evaluate the effects of a multimodal rehabilitation program including lower-limb-strengthening/motor-control exercises, advice on running biomechanics, and symptoms management on symptoms, strength, and ground-reaction forces in runners with PFP.Design:Pre- to post- quasi-experimental.Setting:Gait-analysis laboratory and private physical therapy clinic.Participants:21 runners with PFP (34.1 ± 6.0 y old, symptoms duration 38.1 ± 45.5 mo).Intervention:An 8-wk multimodal rehabilitation program including lower-limb- and core-strengthening and motor-control exercises, as well as advice on running gait and symptoms management.Main Outcome Measures:The Activities of Daily Living Scale of the Knee Outcome Survey (KOS-ADLS) questionnaire and visual analog scales for usual pain (VAS-U), worst pain (VAS-W), and pain during running (VAS-R) were used to assess changes in symptoms and function. Vertical ground-reaction forces (VGRF) during running and lower-limb isometric strength were also measured.Results:Statistically and clinically significant improvements (P < .001) were reported on KOS-ADLS (+17.8 pts), VAS-U (−19.2 pts), VAS-W (−28.7 pts), and VAS-R (−32.2 pts) after the intervention. No significant changes in isometric strength were observed. The instantaneous vertical loading rate was decreased after the intervention (P = .002), and this reduction was correlated with changes in KOS-ADLS scores (P = .028).Conclusion:This multimodal intervention was successful in reducing pain and improving function of runners with PFP. However, no significant changes in lower-limb strength were observed. It appears that changes in VGRF combined with appropriate training advice could explain the clinical outcomes.

2014 ◽  
Vol 20 (4) ◽  
pp. 442-447
Author(s):  
Marcelo Camargo Saad ◽  
Renato Moraes ◽  
Lilian Ramiro Felicio ◽  
Débora Bevilaqua-Grossi

Patellofemoral pain syndrome (PFPS) is a prevalent clinical condition and it affects gait behavior. Braking and propulsive impulses are important biomechanical parameters obtained from ground reaction forces (GRF), which combine the amount of force applied over a period of time. The aim of this study was to evaluate these impulses while walking up and down stairs in healthy controls and PFPS individuals. The results did not reveal significant differences in braking and propulsive impulses between groups during these activities. Thus, the painful condition on a simple functional activity was insufficient to change the motor strategy to walking up or down the stairs.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


2011 ◽  
Vol 27 (3) ◽  
pp. 437-445 ◽  
Author(s):  
H.-C. Lin ◽  
H.-C. Hsu ◽  
T.-W. Lu

ABSTRACTStair locomotion is an important but challenging functional activity for people with lower limb pathology. This study aimed to investigate the bilateral changes in force-bearing on lower limbs during stair locomotion in patients with unilateral ACL deficiency. The ground reaction forces (GRF) were collected from three force platforms: One at ground level in front of a 5-step stair and two on the first two steps respectively. Parameters in vertical and anterior-posterior GRF were extracted and compared between the ACL-deficient (ACLD) and control groups. The ACLD group showed significantly slower stepping cadences in both stair ascent and stepping down to the ground (p < 0.05). The vertical GRF in the ACLD group demonstrated smaller peak forces but larger minimum forces between the two peaks than those in the control group during both stair ascent and descent. Significantly reduced anterior propulsive forces and push-off rates in the late stance were also found in both limbs of the ACLD group (p < 0.05). The slower cadences and reduced force-bearing on the affected limb suggested a protective strategy was adopted. However, the anterior loading parameters in the early stance on the unaffected limb demonstrated different adaptations with significantly larger magnitudes during stair ascent but reduced magnitudes during stair descent (p < 0.05). Similar results were also found in the weight- transferring strategies between legs in consecutive steps with a significantly larger percentage of lift-up forces but a smaller percentage of impact forces on the leading unaffected limb. The results of this study indicated a cautious force-bearing strategy and bilateral adaptation were apparent in the patients with unilateral ACL deficiency. This information may provide a safety guideline for the patients and be helpful for a better use of the stair tasks as part of a rehabilitation program.


2019 ◽  
Author(s):  
Brock Laschowski ◽  
Reza Sharif Razavian ◽  
John McPhee

AbstractAlthough regenerative actuators can extend the operating durations of robotic lower-limb exoskeletons and prostheses, these energy-efficient powertrains have been exclusively designed and evaluated for continuous level-ground walking.ObjectiveHere we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamic simulations to estimate the biomechanical energy available for electrical regeneration.MethodsNine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were measured. Subject-specific body segment parameters were estimated using parameter identification, whereby differences in ground reaction forces and moments between the experimental measurements and inverse dynamic simulations were minimized. Joint mechanical power was calculated from net joint torques and rotational velocities and numerically integrated over time to determine joint biomechanical energy.ResultsThe hip produced the largest peak negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 ± 0.1 W/kg). Negative mechanical work from the hip, knee, and ankle joints per stand-to-sit movement were 0.35 ± 0.06 J/kg, 0.15 ± 0.08 J/kg, and 0.02 ± 0.01 J/kg, respectively.Conclusion and SignificanceAssuming an 80-kg person and previously published regenerative actuator efficiencies (i.e., maximum 63%), robotic lower-limb exoskeletons and prostheses could theoretically regenerate ~26 Joules of total electrical energy while sitting down, compared to ~19 Joules per walking stride. Given that these regeneration performance calculations are based on healthy young adults, future research should include seniors and/or rehabilitation patients to better estimate the biomechanical energy available for electrical regeneration among individuals with mobility impairments.


2017 ◽  
Vol 122 (4) ◽  
pp. 976-984 ◽  
Author(s):  
Owen N. Beck ◽  
Paolo Taboga ◽  
Alena M. Grabowski

Inspired by the springlike action of biological legs, running-specific prostheses are designed to enable athletes with lower-limb amputations to run. However, manufacturer’s recommendations for prosthetic stiffness and height may not optimize running performance. Therefore, we investigated the effects of using different prosthetic configurations on the metabolic cost and biomechanics of running. Five athletes with bilateral transtibial amputations each performed 15 trials on a force-measuring treadmill at 2.5 or 3.0 m/s. Athletes ran using each of 3 different prosthetic models (Freedom Innovations Catapult FX6, Össur Flex-Run, and Ottobock 1E90 Sprinter) with 5 combinations of stiffness categories (manufacturer’s recommended and ± 1) and heights (International Paralympic Committee’s maximum competition height and ± 2 cm) while we measured metabolic rates and ground reaction forces. Overall, prosthetic stiffness [fixed effect (β) = 0.036; P = 0.008] but not height ( P ≥ 0.089) affected the net metabolic cost of transport; less stiff prostheses reduced metabolic cost. While controlling for prosthetic stiffness (in kilonewtons per meter), using the Flex-Run (β = −0.139; P = 0.044) and 1E90 Sprinter prostheses (β = −0.176; P = 0.009) reduced net metabolic costs by 4.3–4.9% compared with using the Catapult prostheses. The metabolic cost of running improved when athletes used prosthetic configurations that decreased peak horizontal braking ground reaction forces (β = 2.786; P = 0.001), stride frequencies (β = 0.911; P < 0.001), and leg stiffness values (β = 0.053; P = 0.009). Remarkably, athletes did not maintain overall leg stiffness across prosthetic stiffness conditions. Rather, the in-series prosthetic stiffness governed overall leg stiffness. The metabolic cost of running in athletes with bilateral transtibial amputations is influenced by prosthetic model and stiffness but not height. NEW & NOTEWORTHY We measured the metabolic rates and biomechanics of five athletes with bilateral transtibial amputations while running with different prosthetic configurations. The metabolic cost of running for these athletes is minimized by using an optimal prosthetic model and reducing prosthetic stiffness. The metabolic cost of running was independent of prosthetic height, suggesting that longer legs are not advantageous for distance running. Moreover, the in-series prosthetic stiffness governs the leg stiffness of athletes with bilateral leg amputations.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5517 ◽  
Author(s):  
Dong Sun ◽  
Gusztáv Fekete ◽  
Qichang Mei ◽  
Yaodong Gu

Background Normative foot kinematic and kinetic data with different walking speeds will benefit rehabilitation programs and improving gait performance. The purpose of this study was to analyze foot kinematics and kinetics differences between slow walking (SW), normal walking (NW) and fast walking (FW) of healthy subjects. Methods A total of 10 healthy male subjects participated in this study; they were asked to carry out walks at a self-selected speed. After measuring and averaging the results of NW, the subjects were asked to perform a 25% slower and 25% faster walk, respectively. Temporal-spatial parameters, kinematics of the tibia (TB), hindfoot (HF), forefoot (FF) and hallux (HX), and ground reaction forces (GRFs) were recorded while the subjects walked at averaged speeds of 1.01 m/s (SW), 1.34 m/s (NW), and 1.68 m/s (FW). Results Hindfoot relative to tibia (HF/TB) and forefoot relative to hindfoot (FF/HF) dorsiflexion (DF) increased in FW, while hallux relative to forefoot (HX/FF) DF decreased. Increased peak eversion (EV) and peak external rotation (ER) in HF/TB were observed in FW with decreased peak supination (SP) in FF/HF. GRFs were increased significantly with walking speed. The peak values of the knee and ankle moments in the sagittal and frontal planes significantly increased during FW compared with SW and NW. Discussion Limited HF/TB and FF/HF motion of SW was likely compensated for increased HX/FF DF. Although small angle variation in HF/TB EV and FF/HF SP during FW may have profound effects for foot kinetics. Higher HF/TB ER contributed to the FF push-off the ground while the center of mass (COM) progresses forward in FW, therefore accompanied by higher FF/HF abduction in FW. Increased peak vertical GRF in FW may affected by decreased stance duration time, the biomechanical mechanism maybe the change in vertical COM height and increase leg stiffness. Walking speed changes accompanied with modulated sagittal plane ankle moments to alter the braking GRF during loading response. The findings of foot kinematics, GRFs, and lower limb joint moments among healthy males may set a reference to distinguish abnormal and pathological gait patterns.


Joints ◽  
2018 ◽  
Vol 06 (02) ◽  
pp. 085-089 ◽  
Author(s):  
Francesco Uboldi ◽  
Paolo Ferrua ◽  
Daniele Tradati ◽  
Pietro Zedde ◽  
Jim Richards ◽  
...  

Purpose This article verifies the effectiveness of a new brace on patellofemoral pain syndrome (PFPS) in adjunct to a specifically developed rehabilitation program. Methods Two groups of 30 patients with PFPS were prospectively and randomly allocated to a rehabilitation protocol, with (group A) or without (group B) the use of a specific brace. All the patients were assessed at 3, 6, and 12 months using the disease-specific Kujala scale and a visual analog scale (VAS) for pain; time to return to sport and patient satisfaction with the brace were also recorded. Results Kujala scale's values showed constant and progressive improvement. The mean score at 6 months was 79.8 ± 6.8 points in group A and 76.8 ± 8.6 in group B, rising at 12 months to 80.9 ± 7.5 in group A and 78.4 ± 8.3 in group B. VAS scores significantly differed (p < 0.05) between the two groups at both 6 and 12 months; the score recorded at 12 months was 0.9 ± 1.3 in the brace-treated group and 1.8 ± 1.6 in the controls. The patients who used a brace showed a quicker return to sports and 75% of the patients in this group were satisfied. Conclusion All the scores improved progressively in both groups. The most significant improvement concerned pain, showing that the brace used in this study may allow a better subjective outcome and a quicker return to sport. Level of Evidence Level II, prospective randomized controlled trial.


Sign in / Sign up

Export Citation Format

Share Document