Acute and Chronic Effects of Exercise on Heart Rate Variability in Adults and Children: A Review

2002 ◽  
Vol 14 (4) ◽  
pp. 328-344 ◽  
Author(s):  
Richard Winsley

Adults’ cardiac autonomic regulation during exercise and in relation to peak oxygen uptake is well understood, however the situation in children is sparsely documented. Heart rate variability (HRV) analysis provides a non-invasive tool to research sympathovagal balance. A predominance of parasympathetic mediated modulation is characterized by a greater degree of HRV and vice versa. The available data indicate the child’s response to be similar to that observed in adults; heart rate increase arises through withdrawal of parasympathetic modulation with ensuing increase in sympathetic modulation; aerobic training increases HRV and a positive correlation between peak oxygen uptake and a parasympathetic preponderance.

2020 ◽  
Vol 78 (11) ◽  
pp. 724-732
Author(s):  
Natalia Buitrago-Ricaurte ◽  
Fátima Cintra ◽  
Gisele Sampaio Silva

ABSTRACT Stroke is one of the leading causes of mortality and disability worldwide. Autonomic dysfunction after ischemic stroke is frequently associated with cardiac complications and high mortality. The brain-heart axis is a good model for understanding autonomic interaction between the autonomic central network and the cardiovascular system. Heart rate variability (HRV) analysis is a non-invasive approach for understanding cardiac autonomic regulation. In stroke patients, HRV parameters are altered in the acute and chronic stages of the disease, having a prognostic value. In this literature review we summarize the main concepts about the autonomic nervous system and HRV as autonomic biomarkers in ischemic stroke.


2020 ◽  
Vol 15 (7) ◽  
pp. 964-970
Author(s):  
David Barranco-Gil ◽  
Lidia B. Alejo ◽  
Pedro L. Valenzuela ◽  
Jaime Gil-Cabrera ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). Methods: Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg−1·min−1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. Results: Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (−0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (−7.9% [14.2%], P = .027; −20.3% [24.7%], P = .006; and −1.7% [10.5%], P = .366). Participants started the TT (minutes 0–3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). Conclusions: Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.


2016 ◽  
Vol 14 (2) ◽  
pp. 35-44
Author(s):  
G. Georgieva-Tsaneva

AbstractThis paper presents several mathematical methods for analysis of electrocardiogram digital data. The measurement of beat to beat fluctuations known as Heart Rate Variability becomes a non-invasive diagnostic technique to study the cardiac autonomic regulation. The analysis was done by software developed by the author. The article presents the results of linear methods, nonlinear methods and wavelet analysis of Heart Rate Variability data in healthy and diseased subjects. The obtained results and the performed comparative analysis demonstrate the possibility for effective application of the considered methods in new cardiovascular information systems.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3905
Author(s):  
Bruno Correia ◽  
Nuno Dias ◽  
Patrício Costa ◽  
José Miguel Pêgo

Heart rate variability (HRV), using electrocardiography (ECG), has gained popularity as a biomarker of the stress response. Alternatives to HRV monitoring, like photoplethysmography (PPG), are being explored as cheaper and unobtrusive non-invasive technologies. We report a new wireless PPG sensor that was tested in detecting changes in HRV, elicited by a mentally stressful task, and to determine if its signal can be used as a surrogate of ECG for HRV analysis. Data were collected simultaneously from volunteers using a PPG and ECG sensor, during a resting and a mentally stressful task. HRV metrics were extracted from these signals and compared to determine the agreement between them and to determine if any changes occurred in the metrics due to the stressful task. For both tasks, a moderate/good agreement was found in the mean interbeat intervals, SDNN, LF, and SD2, and a poor agreement for the pNN50, RMSSD|SD1, and HF metrics. The majority of the tested HRV metrics obtained from the PPG signal showed a significant decrease caused by the mental task. The disagreement found between specific HRV features imposes caution when comparing metrics from different technologies. Nevertheless, the tested sensor was successful at detecting changes in the HRV caused by a mental stressor.


2015 ◽  
pp. 183-189 ◽  
Author(s):  
R. COLOMBO ◽  
A. MARCHI ◽  
B. BORGHI ◽  
T. FOSSALI ◽  
E. TOBALDINI ◽  
...  

Surgical Plethysmographic Index (SPI), calculated from pulse photo-plethysmographic amplitude oscillations, has been proposed as a tool to measure nociception anti-nociception balance during general anesthesia, but it is affected by several confounding factor that alter the autonomic nervous system (ANS) modulation. We hypothesized that SPI may be mainly affected by sympathetic stimulation independently from nociception. We studied the effects of two sympathetic stimuli on SPI, delivered through passive head-up tilt at 45 and 90 degrees angles, in nine awake healthy adults. The sympathetic modulation was assessed by means of heart rate variability (HRV) analysis. Mean (SD) SPI significantly increased from baseline to 45 degrees [from 38.6 (13.7) to 60.8 (7.6), p<0.001)] and to 90 degrees angle tilt [82.3 (5.4), p<0.001]. The electrocardiographic mean R-to-R interval significantly shortened during both passive tilts, whereas systolic arterial pressure did not change during the study protocol. HRV changed significantly during the study protocol towards a predominance of sympathetic modulation during passive tilt. Gravitational sympathetic stimulation at two increasing angles, in absence of any painful stimuli, affects SPI in awake healthy volunteers. SPI seems to reflect the sympathetic outflow directed to peripheral vessels.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elisa Mejía-Mejía ◽  
James M. May ◽  
Mohamed Elgendi ◽  
Panayiotis A. Kyriacou

AbstractHeart rate variability (HRV) utilizes the electrocardiogram (ECG) and has been widely studied as a non-invasive indicator of cardiac autonomic activity. Pulse rate variability (PRV) utilizes photoplethysmography (PPG) and recently has been used as a surrogate for HRV. Several studies have found that PRV is not entirely valid as an estimation of HRV and that several physiological factors, including the pulse transit time (PTT) and blood pressure (BP) changes, may affect PRV differently than HRV. This study aimed to assess the relationship between PRV and HRV under different BP states: hypotension, normotension, and hypertension. Using the MIMIC III database, 5 min segments of PPG and ECG signals were used to extract PRV and HRV, respectively. Several time-domain, frequency-domain, and nonlinear indices were obtained from these signals. Bland–Altman analysis, correlation analysis, and Friedman rank sum tests were used to compare HRV and PRV in each state, and PRV and HRV indices were compared among BP states using Kruskal–Wallis tests. The findings indicated that there were differences between PRV and HRV, especially in short-term and nonlinear indices, and although PRV and HRV were altered in a similar manner when there was a change in BP, PRV seemed to be more sensitive to these changes.


2021 ◽  
Vol 13 (14) ◽  
pp. 7895
Author(s):  
Colin Tomes ◽  
Ben Schram ◽  
Robin Orr

Police work exposes officers to high levels of stress. Special emergency response team (SERT) service exposes personnel to additional demands. Specifically, the circadian cycles of SERT operators are subject to disruption, resulting in decreased capacity to compensate in response to changing demands. Adaptive regulation loss can be measured through heart rate variability (HRV) analysis. While HRV Trends with health and performance indicators, few studies have assessed the effect of overnight shift work on HRV in specialist police. Therefore, this study aimed to determine the effects overnight shift work on HRV in specialist police. HRV was analysed in 11 SERT officers and a significant (p = 0.037) difference was found in pRR50 levels across the training day (percentage of R-R intervals varying by >50 ms) between those who were off-duty and those who were on duty the night prior. HRV may be a valuable metric for quantifying load holistically and can be incorporated into health and fitness monitoring and personnel allocation decision making.


2021 ◽  
Author(s):  
Fatemeh Sarhaddi ◽  
Iman Azimi ◽  
Anna Axelin ◽  
Hannakaisa Niela-Vilen ◽  
Pasi Liljeberg ◽  
...  

BACKGROUND Heart rate variability (HRV) is a non-invasive method reflecting autonomic nervous system (ANS) regulations. Altered HRV is associated with adverse mental or physical health complications. ANS also has a central role in physiological adaption during pregnancy causing normal changes in HRV. OBJECTIVE Assessing trends in heart rate (HR) and HRV parameters as a non-invasive method for remote maternal health monitoring during pregnancy and three months postpartum. METHODS Fifty-eight pregnant women were monitored using an Internet-of-Things (IoT)-based remote monitoring system during pregnancy and 3-months postpartum. Pregnant women were asked to continuously wear Gear sport smartwatch to monitor their HR and HRV. In addition, a cross-platform mobile application was utilized for collecting pregnancy-related information. The trends of HR and HRV parameters were extracted using reliable data. We also analyzed the trends of normalized HRV parameters based on HR to remove the effect of HR changes on HRV trends. Finally, we exploited hierarchical linear mixed models to analyze the trends of HR, HRV, and normalized HRV parameters. RESULTS HR increased significantly during the second trimester (P<.001) and decreased significantly during the third trimester (P<.01). Time-domain HRV parameters, average normal interbeat intervals (AVNN), standard deviation of normal interbeat intervals (SDNN), root mean square of the successive difference of normal interbeat intervals (RMSSD), normalized SDNN (nSDNN), and normalized RMSSD (nRMSSD) decreased significantly during the second trimester (P<.001) then increased significantly during the third trimester (P<.01). Some of the frequency domain parameters, low-frequency power (LF), high-frequency power (HF), and normalized HF (nHF) decreased significantly during the second trimester (P<.01), and HF increased significantly during the third trimester (P<.01). In the postpartum period, nRMSSD decreased (P<.05), and the LF to HF ratio (LF/HF) increased significantly (P<.01). CONCLUSIONS Our study showed that HR increased and HRV parameters decreased as the pregnancy proceeded, and the values returned to normal after the delivery. Moreover, our results show that HR started to decrease while time-domain HRV parameters and HF started to increase during the third trimester. Our results also demonstrate the possibility of continuous HRV monitoring in everyday life settings.


2021 ◽  
pp. 69-70
Author(s):  
Pakanati Sujana ◽  
Venkata Mahesh Gandhavalla ◽  
K. Prabhakara Rao

Introduction: COVID19 is caused by SARS-CoV-2 which is primarily transmitted through respiratory droplets and contact routes. WHO recommended the use of personal protective equipment (PPE) for prevention and N95 respirators are critical components of PPE. Breathing through N95 respirator will impart stress in the individual and that can be assessed by heart rate variability (HRV). HRV measures the variation in time between each heartbeat controlled by autonomic nervous system (ANS), which is a non invasive reliable index to identify the ANS imbalances. Aims And Objectives: This study is aimed at assessing the HRV of Interns working in COVID19 wards using N95 respirators. Methodology: This study included 100 interns in whom short term HRV was recorded using the standard protocol. Lead II of ECG was recorded using AD instruments (ADI) 8channel polygraph and HRV was analysed using Labchart 8pro software. The recordings were taken before and 1hour after wearing N95 respirator. Results: Overall HRV (SDRR) was found to decrease signicantly after wearing N95 respirator for 1hr (p=0.000). Similarly, indices representing the parasympathetic component ( RMSSD and HF ) were also found to decrease signicantly with the use of N95 respirator. Low frequency (LF) power and LF/HF ratio increased signicantly with N95 respirator use (p=0.000). Conclusion: We conclude that using N95 respirator increased sympathetic activity reecting decreased HRV in our subjects Hence we recommend that it is better to change the duty pattern for interns.


Sign in / Sign up

Export Citation Format

Share Document