Role of extracellular vesicle derived biomarkers in drug metabolism and disposition

2021 ◽  
pp. DMD-MR-2021-000411
Author(s):  
Zivile Useckaite ◽  
A. David Rodrigues ◽  
Ashley M Hopkins ◽  
Lauren A Newman ◽  
Jillian G Johnson ◽  
...  
2020 ◽  
Vol 21 (7) ◽  
pp. 541-547
Author(s):  
Bao Sun ◽  
Yue Yang ◽  
Mengzi He ◽  
Yanan Jin ◽  
Xiaoyu Cao ◽  
...  

Background: The liver is one of the major organ involved in drug metabolism. Cytochrome P450s are predominantly involved in drug metabolism. A wide range of CYPs have been reported in the liver which have been involved in its normal as well as in diseased conditions. Doxorubicin, one of the most potent chemotherapeutic drugs, although highly efficacious, also has adverse side effects, with its targets being liver and cardiac tissue. Objective: The study aims to evaluate the reversal potentials of berberine on Doxorubicin induced cyp conversion. Methodology: In the present study, the interplay between anti-oxidants, cytochrome and inflammatory markers in DOX induced liver toxicity and its possible reversal by berberine was ascertained. Results: DOX administration significantly elevated serum as well as tissue stress, which was reverted by berberine treatment. A similar response was observed in tissue inflammatory mediators as well as in serum cytokine levels. Most profound reduction in the cytochrome expression was found in Cyp 2B1, 2B2, and 2E1. However, 2C1, 2C6, and 3A1 although showed a decline, but it did not revert the expression back to control levels. Conclusion: It could be concluded that berberine may be an efficient anti-oxidant and immune modulator. It possesses low to moderate cytochrome modulatory potentials.


Author(s):  
Sherin Saheera ◽  
Vivek P Jani ◽  
Kenneth W Witwer ◽  
Shelby Kutty

Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles released from cells that mediate intercellular communications and play a pivotal role in various physiological and pathological processes. Subtypes of EVs may include plasma-membrane ectosomes or microvesicles and endosomal-origin exosomes, although functional distinctions remain unclear. EVs carry cargo proteins, nucleic acids (RNA and DNA), lipids, and metabolites. By presenting or transferring this cargo to recipient cells, EVs can trigger cellular responses. Here, we summarize what is known about EV biogenesis, composition, and function, with an emphasis on the role of EVs in cardiovascular system. Additionally, we provide an update on the function of EVs in cardiovascular pathophysiology, further highlighting their potential for diagnostic and therapeutic applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Carolina Soekmadji ◽  
Colleen C. Nelson

Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.


2020 ◽  
pp. 321-356
Author(s):  
Rosemary E. McDanell ◽  
André Ε. M. McLean

2021 ◽  
Vol 11 ◽  
Author(s):  
Zheng Zhao ◽  
Shuyue Yang ◽  
Anni Zhou ◽  
Xiao Li ◽  
Rui Fang ◽  
...  

Esophageal squamous cell carcinoma (ESCC) persists among the most lethal and broad-spreading malignancies in China. The exosome is a kind of extracellular vesicle (EV) from about 30 to 200 nm in diameter, contributing to the transfer of specific functional molecules, such as metabolites, proteins, lipids, and nucleic acids. The paramount role of exosomes in the formation and development of ESCC, which relies on promoting intercellular communication in the tumor microenvironment (TME), is manifested with immense amounts. Tumor-derived exosomes (TDEs) participate in most hallmarks of ESCC, including tumorigenesis, invasion, angiogenesis, immunologic escape, metastasis, radioresistance, and chemoresistance. Published reports have delineated that exosome-encapsulated cargos like miRNAs may have utility in the diagnosis, as prognostic biomarkers, and in the treatment of ESCC. This review summarizes the function of exosomes in the neoplasia, progression, and metastasis of ESCC, which improves our understanding of the etiology and pathogenesis of ESCC, and presents a promising target for early diagnostics in ESCC. However, recent studies of exosomes in the treatment of ESCC are sparse. Thus, we introduce the advances in exosome-based methods and indicate the possible applications for ESCC therapy in the future.


Sign in / Sign up

Export Citation Format

Share Document