scholarly journals Differential Tolerance to FTY720-Induced Antinociception in Acute Thermal and Nerve Injury Mouse Pain Models: Role of Sphingosine-1-Phosphate Receptor Adaptation

2018 ◽  
Vol 366 (3) ◽  
pp. 509-518 ◽  
Author(s):  
Laura J. Sim-Selley ◽  
Jenny L. Wilkerson ◽  
James J. Burston ◽  
Kurt F. Hauser ◽  
Virginia McLane ◽  
...  
2020 ◽  
Vol 20 ◽  
Author(s):  
Helen Shiphrah Vethakanraj ◽  
Niveditha Chandrasekaran ◽  
Ashok Kumar Sekar

: Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway hydrolyzes pro-apoptotic ceramide to sphingosine, which by the action of sphingosine-1-kinase is metabolized to mitogenic sphingosine-1-phosphate. The intracellular level of AC determines ceramide/sphingosine-1-phosphate rheostat which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a “double-edged sword” by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.


2000 ◽  
Vol 5 (4) ◽  
pp. 246-246
Author(s):  
T Liu ◽  
Kr Knight ◽  
Dj Tracey
Keyword(s):  

2012 ◽  
Vol 2 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Gordon JG Asmundson ◽  
Holly A Parkerson ◽  
Mark Petter ◽  
Melanie Noel

2007 ◽  
Vol 14 (6) ◽  
pp. 317-325 ◽  
Author(s):  
Fiona M. Smith ◽  
Hila Haskelberg ◽  
David J. Tracey ◽  
Gila Moalem-Taylor

2018 ◽  
Vol 19 (1) ◽  
pp. 114 ◽  
Author(s):  
Vidyani Suryadevara ◽  
Panfeng Fu ◽  
David Ebenezer ◽  
Evgeny Berdyshev ◽  
Irina Bronova ◽  
...  

Pain ◽  
2003 ◽  
Vol 105 (3) ◽  
pp. 467-479 ◽  
Author(s):  
Yunxia Zuo ◽  
Nicholas M Perkins ◽  
David J Tracey ◽  
Carolyn L Geczy
Keyword(s):  

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3357
Author(s):  
Hongmei Zheng ◽  
Sumit Siddharth ◽  
Sheetal Parida ◽  
Xinhong Wu ◽  
Dipali Sharma

Triple negative breast cancer (TNBC) is a heterogeneous disease and is highly related to immunomodulation. As we know, the most effective approach to treat TNBC so far is still chemotherapy. Chemotherapy can induce immunogenic cell death, release of damage-associated molecular patterns (DAMPs), and tumor microenvironment (TME) remodeling; therefore, it will be interesting to investigate the relationship between chemotherapy-induced TME changes and TNBC immunomodulation. In this review, we focus on the immunosuppressive and immunoreactive role of TME in TNBC immunomodulation and the contribution of TME constituents to TNBC subtype classification. Further, we also discuss the role of chemotherapy-induced TME remodeling in modulating TNBC immune response and tumor progression with emphasis on DAMPs-associated molecules including high mobility group box1 (HMGB1), exosomes, and sphingosine-1-phosphate receptor 1 (S1PR1), which may provide us with new clues to explore effective combined treatment options for TNBC.


2019 ◽  
Vol 316 (1) ◽  
pp. C92-C103 ◽  
Author(s):  
Hojin Kang ◽  
Zhigang Hong ◽  
Ming Zhong ◽  
Jennifer Klomp ◽  
Kayla J. Bayless ◽  
...  

Angiogenesis is initiated in response to a variety of external cues, including mechanical and biochemical stimuli; however, the underlying signaling mechanisms remain unclear. Here, we investigated the proangiogenic role of the endothelial mechanosensor Piezo1. Genetic deletion and pharmacological inhibition of Piezo1 reduced endothelial sprouting and lumen formation induced by wall shear stress and proangiogenic mediator sphingosine 1-phosphate, whereas Piezo1 activation by selective Piezo1 activator Yoda1 enhanced sprouting angiogenesis. Similarly to wall shear stress, sphingosine 1-phosphate functioned by activating the Ca2+ gating function of Piezo1, which in turn signaled the activation of the matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase during sprouting angiogenesis. Studies in mice in which Piezo1 was conditionally deleted in endothelial cells demonstrated the requisite role of sphingosine 1-phosphate-dependent activation of Piezo1 in mediating angiogenesis in vivo. These results taken together suggest that both mechanical and biochemical stimuli trigger Piezo1-mediated Ca2+ influx and thereby activate matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase and synergistically facilitate sprouting angiogenesis.


2010 ◽  
Vol 106 (11) ◽  
pp. 1731-1742 ◽  
Author(s):  
Hideto Tawa ◽  
Yoshiyuki Rikitake ◽  
Motonori Takahashi ◽  
Hisayuki Amano ◽  
Muneaki Miyata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document