scholarly journals Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation

2016 ◽  
Vol 2 (7) ◽  
pp. e1600067 ◽  
Author(s):  
Yi Du ◽  
Jincheng Zhuang ◽  
Jiaou Wang ◽  
Zhi Li ◽  
Hongsheng Liu ◽  
...  

Silicene is a monolayer allotrope of silicon atoms arranged in a honeycomb structure with massless Dirac fermion characteristics similar to graphene. It merits development of silicon-based multifunctional nanoelectronic and spintronic devices operated at room temperature because of strong spin-orbit coupling. Nevertheless, until now, silicene could only be epitaxially grown on conductive substrates. The strong silicene-substrate interaction may depress its superior electronic properties. We report a quasi-freestanding silicene layer that has been successfully obtained through oxidization of bilayer silicene on the Ag(111) surface. The oxygen atoms intercalate into the underlayer of silicene, resulting in isolation of the top layer of silicene from the substrate. In consequence, the top layer of silicene exhibits the signature of a 1 × 1 honeycomb lattice and hosts massless Dirac fermions because of much less interaction with the substrate. Furthermore, the oxidized silicon buffer layer is expected to serve as an ideal dielectric layer for electric gating in electronic devices. These findings are relevant for the future design and application of silicene-based nanoelectronic and spintronic devices.


2011 ◽  
Vol 418-420 ◽  
pp. 436-440
Author(s):  
Wichasirikul Amorntep ◽  
Pijitrojana Wanchai

Inhibited and enhanced spontaneous emission of light is essential to quantum optics in design and development of high efficiency optical devices which are useful to security optical communication system. Thus, we performed to develop an efficient single photon source by controlling inhibited or enhanced spontaneous emission of the photon using silicon-based honeycomb lattice patterned finite thickness photonic crystal waveguide. A quantum dot embedded in planar photonic crystal membrane waveguide is the light source. The honeycomb lattice of circular air holes on silicon plate is simulated to obtain large completely photonic band gaps. This significant property shows the potential applied guide modes of photonic crystal membrane for controlling inhibited or enhanced spontaneous emission between the quantum dots and the photonic crystal waveguide. Significantly, this work is oriented to produce the novel single photon sources which can emit one photon at a time for the quantum optical security network with single photon state. In addition to the honeycomb lattice can easily be made on a Si on insulator (SOI) wafer.



2015 ◽  
Vol 24 (07) ◽  
pp. 1550060 ◽  
Author(s):  
E. G. Delgado Acosta ◽  
V. M. Banda Guzmán ◽  
M. Kirchbach

The gauged Klein–Gordon equation, extended by a gsσμνFμν/4 interaction, the contraction of the electromagnetic field strength tensor, Fμν, with the generators, σμν/2, of the Lorentz group in (1/2, 0) ⊕ (0, 1/2), and gs being the gyromagnetic factor, is examined with the aim to find out as to what extent it qualifies as a wave equation for general relativistic spin-1/2 particles transforming as (1/2, 0) ⊕ (0, 1/2) and possibly distinct from the Dirac fermions. This equation can be viewed as the generalization of the gs = 2 case, known under the name of the Feynman–Gell-Mann equation, the only one which allows for a bilinearization into the gauged Dirac equation and its conjugate. At the same time, it is well-known a fact that a gs = 2 value can also be obtained upon the bilinearization of the nonrelativistic Schrödinger into nonrelativistic Pauli equations. The inevitable conclusion is that it must not be necessarily relativity which fixes the gyromagnetic factor of the electron to g(1/2) = 2, but rather the specific form of the primordial quadratic wave equation obeyed by it, that is amenable to a linearization. The fact is that space-time symmetries alone define solely the kinematic properties of the particles and neither fix the values of their interacting constants, nor do they necessarily prescribe linear Lagrangians. Information on such properties has to be obtained from additional physical inputs involving the dynamics. We here provide an example in support of the latter statement. Our case is that the spin-1/2- fermion residing within the four-vector spinor triad, ψμ ~ (1/2+-1/2--3/2-), whose sectors at the free particle level are interconnected by spin-up and spin-down ladder operators, does not allow for a description within a linear framework at the interacting level. Upon gauging, despite transforming according to the irreducible (1/2, 1) ⊕ (1, 1/2) building block of ψμ, and being described by 16-dimensional four-vector spinors, though of only four independent components each, its Compton scattering cross sections, both differential and total, result equivalent to those for a spin-1/2 particle described by the generalized Feynman–Gell-Mann equation from above (for which we provide an independent algebraic motivation) and with g(1/2-) = -2/3. In effect, the spin-1/2- particle residing within the four-vector spinor effectively behaves as a true relativistic "quadratic" fermion. The g(1/2-) = -2/3 value ensures in addition the desired unitarity in the ultraviolet. In contrast, the spin-1/2+ particle, in transforming irreducibly in the (1/2, 0) ⊕ (0, 1/2) sector of ψμ, is shown to behave as a truly linear Dirac fermion. Within the framework employed, the three spin sectors of ψμ are described on equal footing by representation- and spin-specific wave equations and associated Lagrangians which are of second-order in the momenta.





2021 ◽  
Vol 13 (1) ◽  
pp. 50
Author(s):  
Wenyuan Shi

Graphene, as the thinnest material ever found, exhibits unconventionally relativistic behaviour of Dirac fermions. However, unusual phenomena (such as superconductivity) arise when stacking two graphene layers and twisting the bilayer graphene. The relativistic Dirac fermion in graphene has been widely studied and understood, but the large change observed in twisted bilayer graphene (TBG) is intriguing and still unclear because only van der Waals force (vdW) interlayer interaction is added from graphene to TBG and such a very weak interaction is expected to play a negligible role. To understand such dramatic variation, we studied the electronic structures of monolayer, bilayer and twisted bilayer graphene. Twisted bilayer graphene creates different moiré patterns when turned at different angles. We proposed tight-binding and effective continuum models and thereby drafted a computer code to calculate their electronic structures. Our calculated results show that the electronic structure of twisted bilayer graphene changes significantly even by a tiny twist. When bilayer graphene is twisted at special “magic angles”, flat bands appear. We examined how these flat bands are created, their properties and the relevance to some unconventional physical property such as superconductivity. We conclude that in the nanoscopic scale, similar looking atomic structures can create vastly different electronic structures. Like how P. W. Anderson stated that similar looking fields in science can have differences in his article “More is Different”, similar moiré patterns in twisted bilayer graphene can produce different electronic structures.



2021 ◽  
Vol 1 ◽  

Using an organic massless Dirac fermion system, we found that massless Dirac fermions undergo a quantum phase transition without creating any mass gap even in the strong coupling regime.



2018 ◽  
Vol 98 (16) ◽  
Author(s):  
Elliot Christou ◽  
Bruno Uchoa ◽  
Frank Krüger


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Xin Chen ◽  
Ying Du ◽  
Nai Qing Zhang ◽  
Ke Ning Sun

Three-dimensional self-supported nanoarchitectured arrays electrodes (3DSNAEs) consisting of a direct growth of nanoarchitectured arrays on the conductive current collector, including homogeneous and heterogeneous nanoarchitectured arrays structures, have been currently studied as the most promising electrodes owing to their synergies resulting from the multistructure hybrid and integrating heterocomponents to address the requirements (high energy and power density) of superperformance lithium ion batteries (LIBs) applied in portable electronic consumer devices, electric vehicles, large-scale electricity storage, and so on. In the paper, recent advances in the strategies for the fabrication, selection of the different current collector substrates, and structural configuration of 3DSNAEs with different cathode and anode materials are investigated in detail. The intrinsic relationship of the unique structural characters, the conductive substrates, and electrochemical kinetic properties of 3DSNAEs is minutely analyzed. Finally, the future design trends and directions of 3DSNAEs are highlighted, which may open a new avenue of developing ideal multifunctional 3DSNAEs for further advanced LIBs.



2009 ◽  
Vol 23 (20n21) ◽  
pp. 4129-4137
Author(s):  
SHIGEJI FUJITA ◽  
JEONG-HYUK KIM ◽  
KEI ITO ◽  
MANUEL DE LLANO

The unusual quantum Hall effect (QHE) in graphene is often discussed in terms of Dirac fermions moving with a linear dispersion. A new theory describing the same phenomena is presented in terms of the more traditional composite bosons. The "electron" (wave packet) is shown to move easier in the direction [110] ≡ [110 c- axis ] of the honeycomb lattice than perpendicular to it, while the "hole" moves easier in [001]. Since "electrons" and "holes" move in different channels, the number densities can be very high especially when the Fermi surface has "necks". The strong QHE at filling factor ν = 2 arises from the "neck" Fermi surfaces.



2010 ◽  
Vol 82 (24) ◽  
Author(s):  
Wei Wu ◽  
Yao-Hua Chen ◽  
Hong-Shuai Tao ◽  
Ning-Hua Tong ◽  
Wu-Ming Liu


2012 ◽  
Vol 109 (5) ◽  
Author(s):  
Lan Chen ◽  
Cheng-Cheng Liu ◽  
Baojie Feng ◽  
Xiaoyue He ◽  
Peng Cheng ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document