scholarly journals Record Purcell factors in ultracompact hybrid plasmonic ring resonators

2019 ◽  
Vol 5 (8) ◽  
pp. eaav1790 ◽  
Author(s):  
Y. Su ◽  
P. Chang ◽  
C. Lin ◽  
A. S. Helmy

For integrated optical devices and traveling-wave resonators, realistic use of the superior wave-matter interaction offered by plasmonics is impeded by ohmic loss, which increases rapidly with mode volume reduction. In this work, we report composite hybrid plasmonic waveguides (CHPWs) that are not only capable of guiding subwavelength optical mode with long-range propagation but also unrestricted by stringent requirements in structural, material, or modal symmetry. In these asymmetric CHPWs, the versatility afforded by coupling dissimilar plasmonic modes provides improved fabrication tolerance and more degrees of device design optimization. Experimental realization of CHPWs demonstrates propagation loss and mode area of 0.03 dB/μm and 0.002 μm2, corresponding to the smallest combination among long-range plasmonic structures reported to date. CHPW ring resonators with 2.5-μm radius were realized with record Purcell factor compared with existing plasmonic and dielectric resonators of similar radii.

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Qian Zhang ◽  
Jinbin Pan ◽  
Shulong Wang ◽  
Yongqian Du ◽  
Jieyu Wu

Facing the problems of ohmic loss and short propagation length, the application of plasmonic waveguides is limited. Here, a triangle hybrid plasmonic waveguide is introduced, where a cylinder silicon waveguide is separated from the triangle prism silver waveguide by a nanoscale silica gap. The process of constant optimization of waveguide structure is completed and simulation results indicate that the propagation length could reach a length of 510 μm, and the normalized mode area could reach 0.03 along with a high figure of merit 3150. This implies that longer propagation length could be simultaneously achieved along with relatively ultra-deep subwavelength mode confinement due to the hybridization between metallic plasmon polarization mode and silicon waveguide mode, compared with previous study. By an analysis of fabrication errors, it is confirmed that this waveguide is fairly stable over a wide error range. Additionally, the excellent performance of this is further proved by the comparison with other hybrid plasmonic waveguides. Our work is significant to manipulate light waves at sub-wavelength dimensions and enlarge the application fields, such as light detection and photoelectric sensors, which also benefit the improvement of the integration of optical devices.


Nanophotonics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 727-733 ◽  
Author(s):  
Huifu Xiao ◽  
Dezhao Li ◽  
Zilong Liu ◽  
Xu Han ◽  
Wenping Chen ◽  
...  

AbstractIn this paper, we propose and experimentally demonstrate an integrated optical device that can implement the logical function of priority encoding from a 4-bit electrical signal to a 2-bit optical signal. For the proof of concept, the thermo-optic modulation scheme is adopted to tune each micro-ring resonator (MRR). A monochromatic light with the working wavelength is coupled into the input port of the device through a lensed fiber, and the four input electrical logic signals regarded as pending encode signals are applied to the micro-heaters above four MRRs to control the working states of the optical switches. The encoding results are directed to the output ports in the form of light. At last, the logical function of priority encoding with an operation speed of 10 Kbps is demonstrated successfully.


2012 ◽  
Vol 476-478 ◽  
pp. 839-842
Author(s):  
Mo Yang ◽  
Jin Cheng Song

In this paper, we present the design of a novel hybrid dielectric-metal-dielectric waveguide, which consists of a metal stripe sandwiched between low-high dielectric layers. Its modal characteristics are investigated using the finite element method at the telecom wavelength. Simulations show that the dielectric contrast near the metal stripe results in a strongly confined hybrid plasmonic mode with sub-micron mode size and low propagation loss. The effects of geometrical parameters are analyzed systematically and the properties of directional couplers based on such hybrid waveguide are also investigated. The proposed structure could be useful candidates for various integrated optical devices and enable many applications such as electro-optic modulation, switching, sensing and more.


2019 ◽  
pp. 90-95
Author(s):  
V. A. Minaev ◽  
I. D. Korolev ◽  
O. A. Kulish ◽  
A. V. Mazin

The existing methods of information delivery to the strategic and tactical management of many government agencies are expensive, not always reliable and efficient. Therefore, quantum cryptographic systems (QCS) have been actively developed in recent years. However, there are problems with the use of the QCS associated with the reliability of information transfer. First, the existing fiber-optic communication channels (FOCC) are not designed to transmit single-photon signals, which leads to the complexity of their cryptographic protection. The second is insufficiently methodically developed calculation of energy losses and errors in the evaluation of the characteristics of information transfer in FOCC QCS. In article the analysis of the energy loss factors in the classical fiber-optic channel is carried out and the additive loss formula is discussed in detail. Then we consider the fiber-optic channel of quantum information transmission with the use of integrated optical devices. The additive formula of optical losses in such a channel is discussed. The features of losses in integrated optical devices are shown. The features of quantum cryptographic system of information transmission are considered. As a result, the model of FOCC QCS taking into account energy losses is presented, which allows competently in theoretical terms and visualize the passage of information through modern quantum cryptographically secure telecommunications while providing control in government structures.


1998 ◽  
Author(s):  
Robert A. Norwood ◽  
Robert Blomquist ◽  
Louay A. Eldada ◽  
Cathy Glass ◽  
Constantina Poga ◽  
...  

2002 ◽  
Vol 35 (12) ◽  
pp. 1404-1407 ◽  
Author(s):  
Wei Shi ◽  
Changshui Fang ◽  
Qiwei Pan ◽  
Zhihui Qin ◽  
Qintian GU ◽  
...  

2014 ◽  
Vol 28 (04) ◽  
pp. 1450025 ◽  
Author(s):  
XIANKUN YAO

In this paper, we have numerically investigated a novel kind of ultra-compact wavelength demultiplexing (WDM) in high-confined metal–insulator–metal (MIM) plasmonic waveguides. It is found that the drop transmission efficiency of the filtering cavity can be strongly enhanced by introducing a side-coupled cavity in the MIM waveguide. The theoretical analysis is verified by the finite-difference time-domain simulations. Through cascading the filtering units, a highly effective triple-wavelength demultiplexer is proposed by selecting the specific separation between the two coupled cavities of filtering units. Our results may find potential applications for the nanoscale WDM systems in highly integrated optical circuits and networks.


2009 ◽  
Vol 48 (6) ◽  
pp. 065502 ◽  
Author(s):  
Nobuhiko Ozaki ◽  
Shunsuke Ohkouchi ◽  
Yoshiaki Takata ◽  
Naoki Ikeda ◽  
Yoshinori Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document