scholarly journals Imaging localized neuronal activity at fast time scales through biomechanics

2019 ◽  
Vol 5 (4) ◽  
pp. eaav3816 ◽  
Author(s):  
Samuel Patz ◽  
Daniel Fovargue ◽  
Katharina Schregel ◽  
Navid Nazari ◽  
Miklos Palotai ◽  
...  

Mapping neuronal activity noninvasively is a key requirement for in vivo human neuroscience. Traditional functional magnetic resonance (MR) imaging, with a temporal response of seconds, cannot measure high-level cognitive processes evolving in tens of milliseconds. To advance neuroscience, imaging of fast neuronal processes is required. Here, we show in vivo imaging of fast neuronal processes at 100-ms time scales by quantifying brain biomechanics noninvasively with MR elastography. We show brain stiffness changes of ~10% in response to repetitive electric stimulation of a mouse hind paw over two orders of frequency from 0.1 to 10 Hz. We demonstrate in mice that regional patterns of stiffness modulation are synchronous with stimulus switching and evolve with frequency. For very fast stimuli (100 ms), mechanical changes are mainly located in the thalamus, the relay location for afferent cortical input. Our results demonstrate a new methodology for noninvasively tracking brain functional activity at high speed.

2016 ◽  
Vol 23 (5) ◽  
pp. 1254-1263 ◽  
Author(s):  
Matthias Vogelgesang ◽  
Tomas Farago ◽  
Thilo F. Morgeneyer ◽  
Lukas Helfen ◽  
Tomy dos Santos Rolo ◽  
...  

Real-time processing of X-ray image data acquired at synchrotron radiation facilities allows for smart high-speed experiments. This includes workflows covering parameterized and image-based feedback-driven control up to the final storage of raw and processed data. Nevertheless, there is presently no system that supports an efficient construction of such experiment workflows in a scalable way. Thus, here an architecture based on a high-level control system that manages low-level data acquisition, data processing and device changes is described. This system is suitable for routine as well as prototypical experiments, and provides specialized building blocks to conduct four-dimensionalin situ,in vivoandoperandotomography and laminography.


2004 ◽  
Vol 91 (2) ◽  
pp. 719-727 ◽  
Author(s):  
D. Aksenov ◽  
N. Serdyukova ◽  
K. Irwin ◽  
V. Bracha

The cerebellar interposed nuclei (IN) are an essential part of circuits that control classically conditioned eyeblinks in the rabbit. The function of the IN is under the control of GABAergic projections from Purkinje cells of the cerebellar cortex. The exact involvement of cerebellar cortical input into the IN during eyeblink expression is not clear. While it is known that the application of γ-aminobutyric acid-A (GABAA) agonists and antagonists affects the performance of classically conditioned eyeblinks, the effects of these drugs on IN neurons in vivo are not known. The purpose of the present study was to measure the effects of muscimol and picrotoxin on the expression of conditioned eyeblinks and the activity of IN cells simultaneously. Injections of muscimol abolished conditioned responses and either silenced or diminished the activity of IN cells. Two injections were administered in each picrotoxin experiment. The first injection of picrotoxin slightly modified the timing and amplitude of the eyeblink, produced mild tonic eyelid closure, increased tonic activity of IN cells, and reduced the amplitude of the neural responses. The second injection of picrotoxin abolished conditioned responses, further increased tonic eyelid closure, dramatically elevated the tonic activity of IN cells, and in most cases, abolished neuronal responses. These results demonstrate that both GABAA-mediated inactivation and tonic up-regulation of IN cells can interrupt the expression of conditioned eyeblinks and that this behavioral effect is accompanied by the suppression of the neuronal activity correlates of the conditioned stimulus and response.


2020 ◽  
Author(s):  
Marc Deffains ◽  
Tho Haï Nguyen ◽  
Hugues Orignac ◽  
Nathalie Biendon ◽  
Sandra Dovero ◽  
...  

AbstractDesigner Receptors Exclusively Activated by Designer Drugs (DREADDs) are widely used in rodents to manipulate neuronal activity and establish causal links between structure and function. Their utilization in non-human primates (NHPs) is however limited and their efficacy still debated. Here, we tested DREADD expression in the NHP external globus pallidus (GPe) and electrophysiologically validated DREADD-based inhibition of GPe neurons in the anesthetized monkey.To do so, we performed intracerebral injections of viral construct expressing hM4Di receptor under a neuron-specific promoter into the GPe. Then, we recorded the neuronal activity in the DREADD-transduced (test condition) and DREADD-free (control condition) GPe of two anesthetized animals following local intra-GPe microinjection of clozapine-N-oxide (CNO). In total, 19 and 8 well-isolated and stable units were recorded in the DREADD-transduced and DREADD-free GPe, respectively. Overall, we found that almost half (9/19) of the units modulated their activity following CNO injection in DREADD-transduced GPe. Surprisingly, neuronal activity of the GPe units exhibited diverse patterns in timing and polarity (increase/decrease) of firing rate modulations during and after CNO injection. Nevertheless, decreases were exclusive and stronger after CNO injection. In contrast, only one unit modulated its activity after CNO injection in DREADD-free GPe. Moreover, post-mortem histochemical analysis revealed that hM4Di DREADDs were expressed at high level in the GPe neurons located in the vicinity of the viral construct injection sites. Our results therefore show in vivo DREADD-based inhibition of pallidal neurons in the NHP model and reinforce the view that DREADD technology can be effective in NHPs.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maria Mensch ◽  
Jade Dunot ◽  
Sandy M. Yishan ◽  
Samuel S. Harris ◽  
Aline Blistein ◽  
...  

Abstract Background Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. Methods With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. Results We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo. Conclusions These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.


Oncogene ◽  
2021 ◽  
Author(s):  
Jhih-Kai Pan ◽  
Cheng-Han Lin ◽  
Yao-Lung Kuo ◽  
Luo-Ping Ger ◽  
Hui-Chuan Cheng ◽  
...  

AbstractBrian metastasis, which is diagnosed in 30% of triple-negative breast cancer (TNBC) patients with metastasis, causes poor survival outcomes. Growing evidence has characterized miRNAs involving in breast cancer brain metastasis; however, currently, there is a lack of prognostic plasma-based indicator for brain metastasis. In this study, high level of miR-211 can act as brain metastatic prognostic marker in vivo. High miR-211 drives early and specific brain colonization through enhancing trans-blood–brain barrier (BBB) migration, BBB adherence, and stemness properties of tumor cells and causes poor survival in vivo. SOX11 and NGN2 are the downstream targets of miR-211 and negatively regulate miR-211-mediated TNBC brain metastasis in vitro and in vivo. Most importantly, high miR-211 is correlated with poor survival and brain metastasis in TNBC patients. Our findings suggest that miR-211 may be used as an indicator for TNBC brain metastasis.


2021 ◽  
Vol 118 (8) ◽  
pp. 081104
Author(s):  
Andrew J. Bower ◽  
Carlos Renteria ◽  
Joanne Li ◽  
Marina Marjanovic ◽  
Ronit Barkalifa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document