scholarly journals Nano- and microplastics affect the composition of freshwater benthic communities in the long term

2020 ◽  
Vol 6 (5) ◽  
pp. eaay4054 ◽  
Author(s):  
P. E. Redondo-Hasselerharm ◽  
G. Gort ◽  
E. T. H. M. Peeters ◽  
A. A. Koelmans

Given the societal concern about the presence of nano- and microplastics in the environment, our nescience with respect to in situ effects is disturbing. Data on long-term implications under ecologically realistic conditions are particularly important for the risk assessment of nano- and microplastics. Here, we evaluate the long-term (up to 15 months) effects of five concentrations of nano- and microplastics on the natural recolonization of sediments by a macroinvertebrate community. Effects were assessed on the community composition, population sizes and species diversity. Nano- and microplastics adversely affected the abundance of macroinvertebrates after 15 months, which was caused by a reduction in the number of Naididae at the highest concentration (5% plastic per sediment dry weight). For some other taxa, smaller but still significant positive effects were found over time, altogether demonstrating that nano- and microplastics affected the community composition.

Author(s):  
Caroline Raymond ◽  
Göran S Samuelsson ◽  
Stefan Agrenius ◽  
Morten T Schaanning ◽  
Jonas S Gunnarsson

AbstractThe sediments in the Grenland fjords in southern Norway are heavily contaminated by large emissions of dioxins and mercury from historic industrial activities. As a possible in situ remediation option, thin-layer sediment surface capping with powdered activated carbon (AC) mixed with clay was applied at two large test sites (10,000 and 40,000 m2) at 30-m and 95-m depths, respectively, in 2009. This paper describes the long-term biological effects of the AC treatment on marine benthic communities up to 4 years after treatment. Our results show that the capping with AC strongly reduced the benthic species diversity, abundance, and biomass by up to 90%. Vital functions in the benthic ecosystem such as particle reworking and bioirrigation of the sediment were also reduced, analyzed by using novel bioturbation and bioirrigation indices (BPc, BIPc, and IPc). Much of the initial effects observed after 1 and 14 months were still present after 49 months, indicating that the effects are long-lasting. These long-lasting negative ecological effects should be carefully considered before decisions are made on sediment remediation with powdered AC, especially in large areas, since important ecosystem functions can be impaired.


2021 ◽  
pp. 1-12
Author(s):  
Åsa K. Rennermalm ◽  
Regine Hock ◽  
Federico Covi ◽  
Jing Xiao ◽  
Giovanni Corti ◽  
...  

Abstract Refreezing of meltwater in firn is a major component of Greenland ice-sheet's mass budget, but in situ observations are rare. Here, we compare the firn density and total ice layer thickness in the upper 15 m of 19 new and 27 previously published firn cores drilled at 15 locations in southwest Greenland (1850–2360 m a.s.l.) between 1989 and 2019. At all sites, ice layer thickness covaries with density over time and space. At the two sites with the earliest observations (1989 and 1998), bulk density increased by 15–18%, in the top 15 m over 28 and 21 years, respectively. However, following the extreme melt in 2012, elevation-detrended density using 30 cores from all sites decreased by 15 kg m−3 a−1 in the top 3.75 m between 2013 and 2019. In contrast, the lowest elevation site's density shows no trend. Thus, temporary build-up in firn pore space and meltwater infiltration capacity is possible despite the long-term increase in Greenland ice-sheet melting.


Ecosystems ◽  
2021 ◽  
Author(s):  
Didier L. Baho ◽  
Simone Rizzuto ◽  
Luca Nizzetto ◽  
Dag O. Hessen ◽  
Jon Norberg ◽  
...  

AbstractEcological memory (EM) recognizes the importance of previous stress encounters in promoting community tolerance and thereby enhances ecosystem stability, provided that gained tolerances are preserved during non-stress periods. Drawing from this concept, we hypothesized that the recruitment of tolerant species can be facilitated by imposing an initial sorting process (conditioning) during the early stages of community assembly, which should result in higher production (biomass development and photosynthetic efficiency) and stable community composition. To test this, phytoplankton resting stages were germinated from lake sediments originating from two catchments that differed in contamination history: one impacted by long-term herbicides and pesticides exposures (historically contaminated lake) from an agricultural catchment compared to a low-impacted one (near-pristine lake) from a forested catchment. Conditioning was achieved by adding an herbicide (Isoproturon, which was commonly used in the catchment of the historically contaminated lake) during germination. Afterward, the communities obtained from germination were exposed to an increasing gradient of Isoproturon. As hypothesized, upon conditioning, the phytoplankton assemblages from the historically contaminated lake were able to rapidly restore photosynthetic efficiency (p > 0.01) and became structurally (community composition) more resistant to Isoproturon. The communities of the near-pristine lake did not yield these positive effects regardless of conditioning, supporting that EM was a unique attribute of the historically stressed ecosystem. Moreover, assemblages that displayed higher structural resistance concurrently yielded lower biomass, indicating that benefits of EM in increasing structural stability may trade-off with production. Our results clearly indicate that EM can foster ecosystem stability to a recurring stressor.


2009 ◽  
Vol 9 (5) ◽  
pp. 1795-1803 ◽  
Author(s):  
L. K. Emmons ◽  
D. P. Edwards ◽  
M. N. Deeter ◽  
J. C. Gille ◽  
T. Campos ◽  
...  

Abstract. Comparisons of aircraft measurements of carbon monoxide (CO) to the retrievals of CO using observations from the Measurements of Pollution in The Troposphere (MOPITT) instrument onboard the Terra satellite are presented. Observations made as part of the NASA INTEX-B and NSF MIRAGE field campaigns during March–May 2006 are used to validate the MOPITT CO retrievals, along with routine samples from 2001 through 2006 from NOAA and the MOZAIC measurements from commercial aircraft. A significant positive bias, around 20% for total column CO, in MOPITT CO was found in the comparison to in situ measurements during 2006. Comparisons to the long-term records of measurements from NOAA and MOZAIC revealed an increasing bias in the V3 MOPITT CO retrievals over time. The impact of an instrumental drift is illustrated through retrieval simulations.


2015 ◽  
Vol 56 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Avron Spiro ◽  
Richard A. Settersten ◽  
Carolyn M. Aldwin

Abstract Most research on military service focuses on its short-term negative consequences, especially the mental and physical injuries of those deployed in warzones. However, studies of long-term outcomes reveal surprisingly positive effects of military service—both those early in adulthood that grow over time and others that can emerge later in life. These multidomain effects have been found in veterans of World War II and the Korean War and are now being seen in veterans of the Vietnam War. Although some are directly attributable to public policies such as the GI Bill, which facilitate educational and economic gains, there are personal developmental gains as well, including autonomy, emotional maturity and resilience, mastery, and leadership skills, that lead to better health and well-being in later life. These long-term effects vary across persons, change over time within persons, and often reflect processes of cumulative advantage and disadvantage. We propose a life-span model of the effects of military service that provides a perspective for probing both long-term positive and negative outcomes for aging veterans. We further explicate the model by focusing on both sociocultural dynamics and individual processes. We identify public-use data that can be examined to evaluate this model, and offer a set of questions that can be used to assess military service. Finally, we outline an agenda for dedicated inquiry into such effects and consider policy implications for the health and well-being of aging veterans in later life.


2008 ◽  
Vol 8 (5) ◽  
pp. 18091-18109 ◽  
Author(s):  
L. K. Emmons ◽  
D. P. Edwards ◽  
M. N. Deeter ◽  
J. C. Gille ◽  
T. Campos ◽  
...  

Abstract. Comparisons of aircraft measurements of carbon monoxide (CO) to the retrievals of CO using observations from the Measurements of Pollution in The Troposphere (MOPITT) instrument onboard the Terra satellite are presented. Observations made as part of the NASA INTEX-B and NSF MIRAGE field campaigns during March–May 2006 are used to validate the MOPITT CO retrievals, along with routine samples from 2001 through 2006 from NOAA and the MOZAIC measurements from commercial aircraft. A significant positive bias, around 20% for total column CO, in MOPITT CO was found in the comparison to in situ measurements during 2006. Comparisons to the long-term records of measurements from NOAA and MOZAIC revealed an increasing bias in the V3 MOPITT CO retrievals over time. Possible causes for the drift have been investigated and should be significantly reduced in the next version (V4) of MOPITT retrievals.


2011 ◽  
Vol 74 (2) ◽  
pp. 119-123 ◽  
Author(s):  
Elżbieta Sacała ◽  
Agnieszka Biegun ◽  
Anna Demczuk ◽  
Edward Grzyś

In this study, investigated were the effects of NaCl (60 mmol/dm<sup>-3</sup>) and NaCl supplemented with different salts (5 mmol/dm<sup>-3</sup> CaCl<sub>2</sub>, CaSO<sub>4</sub>, CaCO<sub>3</sub>, KCl), on growth of two maize varieties (Cyrkon and Limko). After 7 days of cultivation in nutrient solution the growth response to salinity of both maize varieties was similar. NaCl led to a dramatic decrease in growth of plants (approx. 50% reduction in fresh and dry weight of root, and 70% reduction in fresh weight of shoot). Addition of extra Ca<sup>2+</sup> or K<sup>+</sup> to nutrient solution containing NaCl did not definitely improve the growth parameters of maize. However, among the tested salts, CaCl<sub>2</sub> had a beneficial visual effect on maize seedlings. In other cases the plants showed noticeable symptoms of salt damage. In long term exposure to salinity (two weeks) growth of Cyrkon was more inhibited than Limko. Comparison of growth responses in short-term exposure to salinity (7 days) with long-term (14 days) showed that in Cyrkon variety the negative effects of NaCl were intensified and addition of CaCl<sub>2</sub> to salinized solution had not positive effects on growth. On the contrary, in Limko variety, there was a significant improvement in growth (especially in root dry weight). This fact indicates that during longer exposure to salinity Limko was able to adapt to those conditions. Salinity caused a significant decrease in leaf nitrate reductase activity (60% and 30% reduction respectively in Limko and Cyrkon). Addition of CaCl<sub>2</sub> to salinized nutrient solution resulted in greater enzyme inhibition in Cyrkon (50% decline in relation to plants grown under sole NaCl), and 30% increase in Limko. Inhibition of nitrate reductase activity did not cause a decrease in concentration of soluble protein in maize leaves.


2022 ◽  
Vol 8 ◽  
Author(s):  
Piero L. F. Mazzini ◽  
Cassia Pianca

Prolonged events of anomalously warm sea water temperature, or marine heatwaves (MHWs), have major detrimental effects to marine ecosystems and the world's economy. While frequency, duration and intensity of MHWs have been observed to increase in the global oceans, little is known about their potential occurrence and variability in estuarine systems due to limited data in these environments. In the present study we analyzed a novel data set with over three decades of continuous in situ temperature records to investigate MHWs in the largest and most productive estuary in the US: the Chesapeake Bay. MHWs occurred on average twice per year and lasted 11 days, resulting in 22 MHW days per year in the bay. Average intensities of MHWs were 3°C, with maximum peaks varying between 6 and 8°C, and yearly cumulative intensities of 72°C × days on average. Large co-occurrence of MHW events was observed between different regions of the bay (50–65%), and also between Chesapeake Bay and the Mid-Atlantic Bight (40–50%). These large co-occurrences, with relatively short lags (2–5 days), suggest that coherent large-scale air-sea heat flux is the dominant driver of MHWs in this region. MHWs were also linked to large-scale climate modes of variability: enhancement of MHW days in the Upper Bay were associated with the positive phase of Niño 1+2, while enhancement and suppression of MHW days in both the Mid and Lower Bay were associated with positive and negative phases of North Atlantic Oscillation, respectively. Finally, as a result of long-term warming of the Chesapeake Bay, significant trends were detected for MHW frequency, MHW days and yearly cumulative intensity. If these trends persist, by the end of the century the Chesapeake Bay will reach a semi-permanent MHW state, when extreme temperatures will be present over half of the year, and thus could have devastating impacts to the bay ecosystem, exacerbating eutrophication, increasing the severity of hypoxic events, killing benthic communities, causing shifts in species composition and decline in important commercial fishery species. Improving our basic understanding of MHWs in estuarine regions is necessary for their future predictability and to guide management decisions in these valuable environments.


<em>Abstract.</em>—A number of Pacific salmon populations have already been lost and many others throughout the range are in various states of decline. Recent research has documented that Pacific salmon carcasses serve as a key delivery vector of marine-derived nutrients into the freshwater portions of their ecosystems. This nutrient supply plays a critical biological feedback role in salmon sustainability by supporting juvenile salmon production. We first demonstrate how nutrient feedback potential to juvenile production may be unaccounted for in spawner-recruit models of populations under long-term exploitation. We then present a heuristic, life history-based, spreadsheet survival model that incorporates salmon carcass-driven nutrient feedback to the freshwater components of the salmon ecosystem. The productivity of a hypothetical coho salmon population was simulated using rates from the literature for survival from spawner to egg, egg to fry, fry to smolt, and smolt to adult. The effects of climate variation and nutrient feedback on survival were incorporated, as were density-dependent effects of the numbers of spawners and fry on freshwater survival of eggs and juveniles. The unexploited equilibrium population was subjected to 100 years of 20, 40, 60, and 80% harvest. Each harvest scenario greater than 20% brought the population to a reduced steady state, regardless of generous compensatory survival at low population sizes. Increasing harvest reduced the positive effects of nutrient contributions to population growth. Salmon researchers should further explore this modeling approach for establishing escapement goals. Given the importance of nutrient feedback, managers should strive for generous escapements that support nutrient rebuilding, as well as egg deposition, to ensure strong future salmon production.


2000 ◽  
Vol 46 (6) ◽  
pp. 550-558 ◽  
Author(s):  
Karen Chamberlain ◽  
Don L Crawford

The use of lignocellulolytic Streptomyces spp. as biological agents, to enhance thatch degradation in turf and to slow its rate of accumulation while controlling fungal growth in the thatch layer, was studied. In flask scale studies, two lignocellulolytic Streptomyces violaceusniger (= hygroscopicus) strains (YCED9 and WYE53) decomposed thatch (>30% dry weight) over a 12-week incubation period. Biodegradation was accompanied by production of extracellular cellulases, xylanases, and peroxidases. The accumulation of the polymeric, water-soluble lignin degradation intermediate acid, precipitable polymeric lignin (APPL), was also observed. Residual thatch from 12-week-old cultures had an increased lignin-to-carbohydrate ratio, an indication that although lignin was metabolized, carbohydrates were preferential carbon sources for these actinomycetes. A spore-containing soluble dry powder formulation was used as an inoculum in an in situ field experiment. This formulation was maintained in storage at 4°C for over two years without viability loss. Results from the golf green experiment showed that although treated thatch layers in established greens were not appreciably reduced over the course of one summer, the Streptomyces were active and maintained their populations within the thatch, while fungal growth was suppressed as compared to controls. The results show that treatment of turfgrass with these Streptomyces may be useful for the long-term control of fungal populations within the thatch. Longer field studies are required to assess the long-term potential for also controlling thatch build-up and fungal pathogens.Key words: biocontrol, biodegradation, fungi, Streptomyces, thatch.


Sign in / Sign up

Export Citation Format

Share Document