scholarly journals A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions

2020 ◽  
Vol 6 (14) ◽  
pp. eaay9634 ◽  
Author(s):  
Pengfei Li ◽  
Shuangchao Wang ◽  
Lihang Zhang ◽  
Dewen Qiu ◽  
Xueping Zhou ◽  
...  

Here, we describe a tripartite circular single-stranded (ss) DNA mycovirus, named Fusarium graminearum gemytripvirus 1 (FgGMTV1). The genome of FgGMTV1 comprises three circular ssDNA segments (DNA-A, DNA-B, and DNA-C). Sequence alignments and phylogenetic analyses showed that FgGMTV1 is nested within the family Genomoviridae. We also constructed the first infectious DNA clones of a DNA mycovirus. Our results show that DNA-A and DNA-B are mutually interdependent for their replication and are associated with severely reduced colony growth and hypovirulence. DNA-C relies on DNA-A and DNA-B for replication and is necessary for the recovery of abnormal fungal phenotypes. DNA-C also enhances the accumulation of viral DNA in infected fungi and permits stable colonization and easy transmission via conidia. This is the first multipartite DNA virus isolated from a fungus. Our phylogenetic analyses also suggest that the multipartite genome of FgGMTV1 may have evolved from a monopartite genome of an ancient genomovirus.

Virology ◽  
2016 ◽  
Vol 489 ◽  
pp. 86-94 ◽  
Author(s):  
Pengfei Li ◽  
Yanhong Lin ◽  
Hailong Zhang ◽  
Shuangchao Wang ◽  
Dewen Qiu ◽  
...  

2013 ◽  
Vol 174 (1-2) ◽  
pp. 69-77 ◽  
Author(s):  
Shuangchao Wang ◽  
Hideki Kondo ◽  
Liang Liu ◽  
Lihua Guo ◽  
Dewen Qiu

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2254
Author(s):  
Meiling Zhang ◽  
Zhenrui He ◽  
Xiaotong Huang ◽  
Canwei Shu ◽  
Erxun Zhou

Here, we describe a novel double-stranded (ds) RNA mycovirus designated Rhizoctonia solani dsRNA virus 5 (RsRV5) from strain D122 of Rhizoctonia solani AG-1 IA, the causal agent of rice sheath blight. The RsRV5 genome consists of two segments of dsRNA (dsRNA-1, 1894 bp and dsRNA-2, 1755 bp), each possessing a single open reading frame (ORF). Sequence alignments and phylogenetic analyses showed that RsRV5 is a new member of the genus Gammapartitivirus in the family Partitiviridae. Transmission electron microscope (TEM) images revealed that RsRV5 has isometric viral particles with a diameter of approximately 20 nm. The mycovirus RsRV5 was successfully removed from strain D122 by using the protoplast regeneration technique, thus resulting in derivative isogenic RsRV5-cured strain D122-P being obtained. RsRV5-cured strain D122-P possessed the traits of accelerated mycelial growth rate, increased sclerotia production and enhanced pathogenicity to rice leaves compared with wild type RsRV5-infection strain D122. Transcriptome analysis showed that three genes were differentially expressed between two isogenic strains, D122 and D122-P. These findings provided new insights into the molecular mechanism of the interaction between RsRV5 and its host, D122 of R. solani AG-1 IA.


2021 ◽  
Vol 7 (6) ◽  
pp. 478
Author(s):  
Xue-Wei Wang ◽  
Tom W. May ◽  
Shi-Liang Liu ◽  
Li-Wei Zhou

Hyphodontia sensu lato, belonging to Hymenochaetales, accommodates corticioid wood-inhabiting basidiomycetous fungi with resupinate basidiocarps and diverse hymenophoral characters. Species diversity of Hyphodontia sensu lato has been extensively explored worldwide, but in previous studies the six accepted genera in Hyphodontia sensu lato, viz. Fasciodontia, Hastodontia, Hyphodontia, Kneiffiella, Lyomyces and Xylodon were not all strongly supported from a phylogenetic perspective. Moreover, the relationships among these six genera in Hyphodontia sensu lato and other lineages within Hymenochaetales are not clear. In this study, we performed comprehensive phylogenetic analyses on the basis of multiple loci. For the first time, the independence of each of the six genera receives strong phylogenetic support. The six genera are separated in four clades within Hymenochaetales: Fasciodontia, Lyomyces and Xylodon are accepted as members of a previously known family Schizoporaceae, Kneiffiella and Hyphodontia are, respectively, placed in two monotypic families, viz. a previous name Chaetoporellaceae and a newly introduced name Hyphodontiaceae, and Hastodontia is considered to be a genus with an uncertain taxonomic position at the family rank within Hymenochaetales. The three families emerged between 61.51 and 195.87 million years ago. Compared to other families in the Hymenochaetales, these ages are more or less similar to those of Coltriciaceae, Hymenochaetaceae and Oxyporaceae, but much older than those of the two families Neoantrodiellaceae and Nigrofomitaceae. In regard to species, two, one, three and 10 species are newly described from Hyphodontia, Kneiffiella, Lyomyces and Xylodon, respectively. The taxonomic status of additional 30 species names from these four genera is briefly discussed; an epitype is designated for X. australis. The resupinate habit and poroid hymenophoral configuration were evaluated as the ancestral state of basidiocarps within Hymenochaetales. The resupinate habit mainly remains, while the hymenophoral configuration mainly evolves to the grandinioid-odontioid state and also back to the poroid state at the family level. Generally, a taxonomic framework for Hymenochaetales with an emphasis on members belonging to Hyphodontia sensu lato is constructed, and trait evolution of basidiocarps within Hymenochaetales is revealed accordingly.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan C. Muñoz-Escalante ◽  
Andreu Comas-García ◽  
Sofía Bernal-Silva ◽  
Daniel E. Noyola

AbstractRespiratory syncytial virus (RSV) is a major cause of respiratory infections and is classified in two main groups, RSV-A and RSV-B, with multiple genotypes within each of them. For RSV-B, more than 30 genotypes have been described, without consensus on their definition. The lack of genotype assignation criteria has a direct impact on viral evolution understanding, development of viral detection methods as well as vaccines design. Here we analyzed the totality of complete RSV-B G gene ectodomain sequences published in GenBank until September 2018 (n = 2190) including 478 complete genome sequences using maximum likelihood and Bayesian phylogenetic analyses, as well as intergenotypic and intragenotypic distance matrices, in order to generate a systematic genotype assignation. Individual RSV-B genes were also assessed using maximum likelihood phylogenetic analyses and multiple sequence alignments were used to identify molecular markers associated to specific genotypes. Analyses of the complete G gene ectodomain region, sequences clustering patterns, and the presence of molecular markers of each individual gene indicate that the 37 previously described genotypes can be classified into fifteen distinct genotypes: BA, BA-C, BA-CC, CB1-THB, GB1-GB4, GB6, JAB1-NZB2, SAB1, SAB2, SAB4, URU2 and a novel early circulating genotype characterized in the present study and designated GB0.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 66
Author(s):  
Zoltán László ◽  
Péter Pankovics ◽  
Gábor Reuter ◽  
Attila Cságola ◽  
Ádám Bálint ◽  
...  

Most picornaviruses of the family Picornaviridae are relatively well known, but there are certain “neglected” genera like Bopivirus, containing a single uncharacterised sequence (bopivirus A1, KM589358) with very limited background information. In this study, three novel picornaviruses provisionally called ovipi-, gopi- and bopivirus/Hun (MW298057-MW298059) from enteric samples of asymptomatic ovine, caprine and bovine respectively, were determined using RT-PCR and dye-terminator sequencing techniques. These monophyletic viruses share the same type II-like IRES, NPGP-type 2A, similar genome layout (4-3-4) and cre-localisations. Culture attempts of the study viruses, using six different cell lines, yielded no evidence of viral growth in vitro. Genomic and phylogenetic analyses show that bopivirus/Hun of bovine belongs to the species Bopivirus A, while the closely related ovine-origin ovipi- and caprine-origin gopivirus could belong to a novel species “Bopivirus B” in the genus Bopivirus. Epidemiological investigation of N = 269 faecal samples of livestock (ovine, caprine, bovine, swine and rabbit) from different farms in Hungary showed that bopiviruses were most prevalent among <12-month-old ovine, caprine and bovine, but undetectable in swine and rabbit. VP1 capsid-based phylogenetic analyses revealed the presence of multiple lineages/genotypes, including closely related ovine/caprine strains, suggesting the possibility of ovine–caprine interspecies transmission of certain bopiviruses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Luo ◽  
Yiying Ding ◽  
Zhihao Peng ◽  
Kezhi Chen ◽  
Xuewen Zhang ◽  
...  

AbstractHeteropoda venatoria in the family Sparassidae is highly valued in pantropical countries because the species feed on domestic insect pests. Unlike most other species of Araneomorphae, H. venatoria uses the great speed and strong chelicerae (mouthparts) with toxin glands to capture the insects instead of its web. Therefore, H. venatoria provides unique opportunities for venom evolution research. The venom of H. venatoria was explored by matrix-assisted laser desorption/ionization tandem time-of-flight and analyzing expressed sequence tags. The 154 sequences coding cysteine-rich peptides (CRPs) revealed 24 families based on the phylogenetic analyses of precursors and cysteine frameworks in the putative mature regions. Intriguingly, four kinds of motifs are first described in spider venom. Furthermore, combining the diverse CRPs of H. venatoria with previous spider venom peptidomics data, the structures of precursors and the patterns of cysteine frameworks were analyzed. This work revealed the dynamic evolutionary trends of venom CRPs in H. venatoria: the precursor has evolved an extended mature peptide with more cysteines, and a diminished or even vanished propeptides between the signal and mature peptides; and the CRPs evolved by multiple duplications of an ancestral ICK gene as well as recruitments of non-toxin genes.


Author(s):  
Shan Jiang ◽  
Feng-Bai Lian ◽  
You-Yang Sun ◽  
Xiao-Kui Zhang ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped and facultatively aerobic bacterial strain, designated F7430T, was isolated from coastal sediment collected at Jingzi Wharf in Weihai, PR China. Cells of strain F7430T were 0.3–0.4 µm wide, 2.0–2.6 µm long, non-flagellated, non-motile and formed pale-beige colonies. Growth was observed at 4–40 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.5–8.0) and at NaCl concentrations of 1.0–10.0 % (w/v; optimum, 1.0 %). The sole respiratory quinone of strain F7430T was ubiquinone 8 and the predominant cellular fatty acids were summed feature 8 (C18 : 1  ω7c / C18 : 1  ω6c; 60.7 %), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c; 30.2 %) and C15 : 0 iso (13.9 %). The polar lipids of strain F7430T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid and three unidentified lipids. Results of 16S rRNA gene sequences analyses indicated that this strain belonged to the family Halieaceae and had high sequence similarities to Parahaliea aestuarii JCM 51547T (95.3 %) and Halioglobus pacificus DSM 27932T (95.2 %) followed by 92.9–95.0 % sequence similarities to other type species within the aforementioned family. The rpoB gene sequences analyses indicated that the novel strain had the highest sequence similarities to Parahaliea aestuarii JCM 51547T (82.2 %) and Parahaliea mediterranea DSM 21924T (82.2 %) followed by 75.2–80.5 % sequence similarities to other type species within this family. Phylogenetic analyses showed that strain F7430T constituted a monophyletic branch clearly separated from the other genera of family Halieaceae . Whole-genome sequencing of strain F7430T revealed a 3.3 Mbp genome size with a DNA G+C content of 52.6 mol%. The genome encoded diverse metabolic pathways including the Entner–Doudoroff pathway, assimilatory sulphate reduction and biosynthesis of dTDP-l-rhamnose. Based on results from the current polyphasic study, strain F7430T is proposed to represent a novel species of a new genus within the family Halieaceae , for which the name Sediminihaliea albiluteola gen. nov., sp. nov. is proposed. The type strain of the type species is F7430T (=KCTC 72873T=MCCC 1H00420T).


Zootaxa ◽  
2021 ◽  
Vol 4995 (2) ◽  
pp. 334-344
Author(s):  
QIAN ZHOU ◽  
FAHUI TANG ◽  
YUANJUN ZHAO

During a survey of parasitic ciliates in Chongqing, China, Trichodina matsu Basson & Van As, 1994 was isolated from gills of Tachysurus fulvidraco. Furthermore, the 18S rRNA gene and ITS-5.8S rRNA region of T. matsu were sequenced for the first time and applied for the species identification and comparison with similar species in the present study. Based on the morphological and molecular comparisons, the results indicate that T. matsu is an ectoparasite specific for the Siluriformes catfish. Based on the analyses of genetic distance, multiple sequence alignments, and phylogenetic analyses, no obvious differentiation within populations of T. matsu was found. In addition, the ‘Trichodina hyperparasitis’ (KX904933) in GenBank is a misidentification and appears to be conspecific with T. matsu according to the comparison of morphological and molecular data.  


2018 ◽  
Vol 85 (1) ◽  
Author(s):  
Haruhisa Suga ◽  
Mitsuhiro Arai ◽  
Emi Fukasawa ◽  
Keiichi Motohashi ◽  
Hiroyuki Nakagawa ◽  
...  

ABSTRACTFusarium fujikuroiis a pathogenic fungus that infects rice. It produces several important mycotoxins, such as fumonisins. Fumonisin production has been detected in strains of maize, strawberry, and wheat, whereas it has not been detected in strains from rice seedlings infested with bakanae disease in Japan. We investigated the genetic relationships, pathogenicity, and resistance to a fungicide, thiophanate-methyl (TM), in 51 fumonisin-producing strains and 44 nonproducing strains. Phylogenetic analyses based on amplified fragment length polymorphism (AFLP) markers and two specific genes (a combined sequence of translation elongation factor 1α [TEF1α] and RNA polymerase II second-largest subunit [RPB2]) indicated differential clustering between the fumonisin-producing and -nonproducing strains. One of the AFLP markers, EATMCAY107, was specifically present in the fumonisin-producing strains. A specific single nucleotide polymorphism (SNP) between the fumonisin-producing and nonproducing strains was also detected inRPB2, in addition to an SNP previously found inTEF1α. Gibberellin production was higher in the nonproducing than in the producing strains according to anin vitroassay, and the nonproducing strains had the strongest pathogenicity with regard to rice seedlings. TM resistance was closely correlated with the cluster of fumonisin-nonproducing strains. The results indicate that intraspecific evolution in JapaneseF. fujikuroiis associated with fumonisin production and pathogenicity. Two subgroups of JapaneseF. fujikuroi, designated G group and F group, were distinguished based on phylogenetic differences and the high production of gibberellin and fumonisin, respectively.IMPORTANCEFusarium fujikuroiis a pathogenic fungus that causes rice bakanae disease. Historically, this pathogen has been known asFusarium moniliforme, along with many other species based on a broad species concept. Gibberellin, which is currently known as a plant hormone, is a virulence factor ofF. fujikuroi. Fumonisin is a carcinogenic mycotoxin posing a serious threat to food and feed safety. Although it has been confirmed thatF. fujikuroiproduces gibberellin and fumonisin, production varies among strains, and individual production has been obscured by the traditional appellation ofF. moniliforme, difficulties in species identification, and variation in the assays used to determine the production of these secondary metabolites. In this study, we discovered two phylogenetic subgroups associated with fumonisin and gibberellin production in JapaneseF. fujikuroi.


Sign in / Sign up

Export Citation Format

Share Document