scholarly journals Probing the hydrothermal system of the Chicxulub impact crater

2020 ◽  
Vol 6 (22) ◽  
pp. eaaz3053 ◽  
Author(s):  
David A. Kring ◽  
Sonia M. Tikoo ◽  
Martin Schmieder ◽  
Ulrich Riller ◽  
Mario Rebolledo-Vieyra ◽  
...  

The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drilled to a depth of 1335 m below the sea floor into the peak ring, providing a unique opportunity to study the thermal and chemical modification of Earth’s crust caused by the impact. The recovered core shows the crater hosted a spatially extensive hydrothermal system that chemically and mineralogically modified ~1.4 × 105 km3 of Earth’s crust, a volume more than nine times that of the Yellowstone Caldera system. Initially, high temperatures of 300° to 400°C and an independent geomagnetic polarity clock indicate the hydrothermal system was long lived, in excess of 106 years.

Geology ◽  
2021 ◽  
Author(s):  
Jiawei Zhao ◽  
Long Xiao ◽  
Zhiyong Xiao ◽  
Joanna V. Morgan ◽  
Gordon R. Osinski ◽  
...  

Large impact structures with peak rings are common landforms across the solar system, and their formation has implications for both the interior structure and thermal evolution of planetary bodies. Numerical modeling and structural studies have been used to simulate and ground truth peak-ring formative mechanisms, but the shock metamorphic record of minerals within these structures remains to be ascertained. We investigated impact-related microstructures and high-pressure phases in zircon from melt-bearing breccias, impact melt rock, and granitoid basement from the Chicxulub peak ring (Yucatán Peninsula, Mexico), sampled by the International Ocean Discovery Program (IODP)/International Continental Drilling Project (IODP-ICDP) Expedition 364 Hole M0077A. Zircon grains exhibit shock features such as reidite, zircon twins, and granular zircon including “former reidite in granular neoblastic” (FRIGN) zircon. These features record an initial high-pressure shock wave (>30 GPa), subsequent relaxation during the passage of the rarefaction wave, and a final heating and annealing stage. Our observed grain-scale deformation history agrees well with the stress fields predicted by the dynamic collapse model, as the central uplift collapsed downward-then-outward to form the peak ring. The occurrence of reidite in a large impact basin on Earth represents the first such discovery, preserved due to its separation from impact melt and rapid cooling by the resurging ocean. The coexistence of reidite and FRIGN zircon within the impact melt–bearing breccias indicates that cooling by seawater was heterogeneous. Our results provide valuable information on when different shock microstructures form and how they are modified according to their position in the impact structure, and this study further improves on the use of shock barometry as a diagnostic tool in understanding the cratering process.


Author(s):  
Wolf Uwe Reimold ◽  
Christian Koeberl

ABSTRACT This paper does not have an abstract. CONFERENCE The Large Meteorite Impacts and Planetary Evolution Conference VI (LMI VI) took place between 30 September and 3 October 2019 on the campus of the University of Brasília (UnB) in Brasília, Brazil. This series of essentially quintennial conferences has been a mainstay for three decades. It was initiated with the aim to review major research outcomes, share ideas, and fertilize new collaborations in the impact cratering and planetary science fields. The timing for LMI VI, related to the state of impact cratering research, was a good one. For example, the studies resulting from the important IODP-ICDP (International Ocean Discovery Program–International Continental Scientific Drilling Program) project, in which a deep drill core was retrieved from the peak ring of the Chicxulub impact structure—the smoking gun for the Cretaceous-Paleogene (K-Pg) boundary impact event coincident with the mass extinction at that time—were nearing completion and could be presented, in part, at LMI VI. Numerous other advances in impact research had been made in the preceding years (for example, state-of-the-art microstructural studies on accessary minerals with electron backscatter diffraction [EBSD]) and were extensively discussed at the conference. And, finally, interest in impact cratering has significantly increased in recent years, not only...


Author(s):  
Pim Kaskes ◽  
Sietze J. de Graaff ◽  
Jean-Guillaume Feignon ◽  
Thomas Déhais ◽  
Steven Goderis ◽  
...  

This study presents a new classification of a ∼100-m-thick crater suevite sequence in the recent International Ocean Discovery Program (IODP)-International Continental Scientific Drilling Program (ICDP) Expedition 364 Hole M0077A drill core to better understand the formation of suevite on top of the Chicxulub peak ring. We provide an extensive data set for this succession that consists of whole-rock major and trace element compositional data (n = 212) and petrographic data supported by digital image analysis. The suevite sequence is subdivided into three units that are distinct in their petrography, geochemistry, and sedimentology, from base to top: the ∼5.6-m-thick non-graded suevite unit, the ∼89-m-thick graded suevite unit, and the ∼3.5-m-thick bedded suevite unit. All of these suevite units have isolated Cretaceous planktic foraminifera within their clastic groundmass, which suggests that marine processes were responsible for the deposition of the entire M0077A suevite sequence. The most likely scenario describes that the first ocean water that reached the northern peak ring region entered through a N-NE gap in the Chicxulub outer rim. We estimate that this ocean water arrived at Site M0077 within 30 minutes after the impact and was relatively poor in rock debris. This water caused intense quench fragmentation when it interacted with the underlying hot impact melt rock, and this resulted in the emplacement of the ∼5.6-m-thick hyaloclastite-like, non-graded suevite unit. In the following hours, the impact structure was flooded by an ocean resurge rich in rock debris, which caused the phreatomagmatic processes to stop and the ∼89-m-thick graded suevite unit to be deposited. We interpret that after the energy of the resurge slowly dissipated, oscillating seiche waves took over the sedimentary regime and formed the ∼3.5-m-thick bedded suevite unit. The final stages of the formation of the impactite sequence (estimated to be <20 years after impact) were dominated by resuspension and slow atmospheric settling, including the final deposition of Chicxulub impactor debris. Cumulatively, the Site M0077 suevite sequence from the Chicxulub impact site preserved a high-resolution record that provides an unprecedented window for unravelling the dynamics and timing of proximal marine cratering processes in the direct aftermath of a large impact event.


Geology ◽  
2020 ◽  
Vol 48 (11) ◽  
pp. 1048-1052
Author(s):  
Francisco J. Rodríguez-Tovar ◽  
Christopher M. Lowery ◽  
Timothy J. Bralower ◽  
Sean P.S. Gulick ◽  
Heather L. Jones

Abstract Previous ichnological analysis at the Chicxulub impact crater, Yucatán Peninsula, México (International Ocean Discovery Program [IODP]/International Continental Scientific Drilling Program [ICDP] Site M0077), showed a surprisingly rapid initial tracemaker community recovery after the end-Cretaceous (Cretaceous-Paleogene [K-Pg]) mass extinction event. Here, we found that full recovery was also rapid, with the establishment of a well-developed tiered community within ∼700 k.y. Several stages of recovery were observed, with distinct phases of stabilization and diversification, ending in the development of a trace fossil assemblage mainly consisting of abundant Zoophycos, Chondrites, and Planolites, assigned to the Zoophycos ichnofacies. The increase in diversity is associated with higher abundance, larger forms, and a deeper and more complex tiering structure. Such rapid recovery suggests that favorable paleoenvironmental conditions were quickly reestablished within the impact basin, enabling colonization of the substrate. Comparison with the end-Permian extinction reveals similarities during recovery, yet postextinction recovery was significantly faster after the K-Pg event. The rapid recovery has significant implications for the evolution of macrobenthic biota after the K-Pg event. Our results have relevance in understanding how communities recovered after the K-Pg impact and how this event differed from other mass extinction events.


2018 ◽  
Vol 56 ◽  
pp. 04019
Author(s):  
Nikolay Grib ◽  
Valery Imaev ◽  
Galina Grib ◽  
Lyudmila Imaeva ◽  
Igor Kolodeznikov

Impulse loads, arising due to the high natural seismicity of the South Yakutia region, exercise both direct and indirect effects on the upper part of the Earth's crust during industrial explosions. The direct effects result from nonlinear displacements caused by the blast wave and the subsequent formation of new disturbances. The indirect effects arise due to the activation of structural elements along geological contacts, leading to the emergence of technogenic seismicity foci. The foci of induced seismicity are either confined to the blast points, or located along the tectonic structures crossing quarry fields. The technogenic impact on the geological environment transforms the independent local seismic process, since explosions trigger a chain of local seismic events. The near-surface layers of the Earth's crust become activated in the area of dynamic influence of active faults. Under the influence of explosions, both the number of seismic events and the average level of released energy alter. Impulse loads on the geological environment lead to a spatial redistribution of the foci of low-energy (K <7) earthquakes. The main form of the geodynamic development of seismogenic faults is the movement of their sides in the form of mutual “slippage”. Seismic events are manifested only when the aforementioned form of deformation is impossible or difficult to develop, in other words, when the stress-state areas of the Earth's crust develop. Therefore, the shaking impact of blasts can be considered as a factor contributing to the predominance of aseismic forms of fault motion in the form of smooth slippage of their sides. In conclusion, the impact of industrial blasts can not only activate faults around the mining area, but also have an unloading effect on the foci of seismic hazard forming in the interior, i.e. the redistribution of earthquake energy in terms of reducing earthquake energy class.


2019 ◽  
Author(s):  
Sean P.S. Gulick ◽  
◽  
Joanna V. Morgan ◽  
IODP-ICDP Expedition 364 Scientists

2006 ◽  
Vol 4 ◽  
pp. 32-40
Author(s):  
M.I. Davletov ◽  
Yu.V. Kazantsev ◽  
A.G. Khakimov

The present investigation concerns the movement and stress deformed state of a main pipeline with excess internal pressure surrounded by a highly viscous medium under changing temperature and also in the case of thrusts and dislocations of the Earth’s crust. Account is taken of constraint forces occurred due to excess internal pressure and temperature change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amir Siraj ◽  
Abraham Loeb

AbstractThe origin of the Chicxulub impactor, which is attributed as the cause of the K/T mass extinction event, is an unsolved puzzle. The background impact rates of main-belt asteroids and long-period comets have been previously dismissed as being too low to explain the Chicxulub impact event. Here, we show that a fraction of long-period comets are tidally disrupted after passing close to the Sun, each producing a collection of smaller fragments that cross the orbit of Earth. This population could increase the impact rate of long-period comets capable of producing Chicxulub impact events by an order of magnitude. This new rate would be consistent with the age of the Chicxulub impact crater, thereby providing a satisfactory explanation for the origin of the impactor. Our hypothesis explains the composition of the largest confirmed impact crater in Earth’s history as well as the largest one within the last million years. It predicts a larger proportion of impactors with carbonaceous chondritic compositions than would be expected from meteorite falls of main-belt asteroids.


2020 ◽  
Author(s):  
Gerta Keller

&lt;p&gt;The Cretaceous&amp;#8211;Paleogene boundary (KTB or KPB) mass extinction is primarily known for the&lt;br&gt;demise of the dinosaurs, the Chicxulub impact, and the rancorous forty-year-old controversy&lt;br&gt;over the cause of this mass extinction. For the first 30 years, the controversy primarily revolved&lt;br&gt;around the age of the impact claimed as precisely KTB based on the assumption that it caused&lt;br&gt;the mass extinction. The iridium (Ir) anomaly at the KTB was claimed proof of the asteroid&lt;br&gt;impact, but no Ir was ever associated with impact evidence and recent findings reveal no&lt;br&gt;extraterrestrial component in PGEs or the KTB Ir anomaly. Impact melt rock glass spherules are&lt;br&gt;also claimed as indisputable evidence of the KTB age impact, but such spherule layers are&lt;br&gt;commonly reworked from the primary (oldest) layer in late Maastrichtian, KTB and Danian&lt;br&gt;sediments; thus only the oldest impact spherule layer documented near the base of zone CF1&lt;br&gt;~200 ky below the KTB can approximate the impact&amp;#8217;s age. Similarly, the impact breccia in the&lt;br&gt;Chicxulub impact crater predates the KTB. The best age derived from Ar/Ar dating of impact&lt;br&gt;glass spherules is within 200 ky of the KTB and thus no evidence for the KTB age. All evidence&lt;br&gt;strongly suggests the Chicxulub impact most likely predates the mass extinction ~ 200 ky and&lt;br&gt;played no role in it.&lt;br&gt;Deccan volcanism (LIP) was dismissed as potential cause or even contributor to the KTB mass&lt;br&gt;extinction despite the fact that all other mass extinctions are associated with Large Igneous&lt;br&gt;Province (LIP) volcanism but none with an asteroid impact. During the last decade, Deccan&lt;br&gt;volcanism gained credence based on a succession of discoveries: 1) the mass extinction in&lt;br&gt;between the longest Deccan lava flows across India; 2) high-precision dating of the entire&lt;br&gt;sequence of Deccan volcanism based on UPb zircon dating; 3) recognition of four distinct&lt;br&gt;eruption pulses all related to global climate warming with the largest pulse beginning 20 ky prior&lt;br&gt;to and ending at the KTB; 4) Identifying the climate link to Deccan volcanism based on age&lt;br&gt;dating and mercury from Deccan eruptions in marine sediments; and 5) Identifying the KTB&lt;br&gt;mass extinction directly related to the major Deccan eruption pulse, hyperthermal warming and&lt;br&gt;ocean acidification all linked to global mercury fallout from Deccan eruptions in marine&lt;br&gt;sediments. Despite this remarkable culmination of evidence, the controversy continues with&lt;br&gt;impact proponents arguing that Deccan volcanism didn&amp;#8217;t exist at the KTB &amp;#8211; the impact was the&lt;br&gt;sole cause.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document