scholarly journals Directional liquid dynamics of interfaces with superwettability

2020 ◽  
Vol 6 (37) ◽  
pp. eabb5528 ◽  
Author(s):  
Haoyu Dai ◽  
Zhichao Dong ◽  
Lei Jiang

Natural creatures use their surface structures to control directional liquid dynamics for survival. Learning from nature, artificial superwetting materials have triggered technological revolutions in many disciplines. To improve controllability, researchers have attempted to use external fields, such as thermal, light, magnetic, and electric fields, to assist or achieve controllable liquid dynamics. Emerging directional liquid transport applications have prosperously advanced in recent years but still present some challenges. This review discusses and summarizes the field of directional liquid dynamics on natural creatures and artificial surfaces with superwettabilities and ventures to propose several potential strategies to construct directional liquid transport systems for fog collection, 3D printing, energy devices, separation, soft machine, and sensor devices, which are useful for driving liquid transport or motility.


2021 ◽  
Author(s):  
Jacqueline M. Hicks ◽  
Yun-Chiao Yao ◽  
Sydney Barber ◽  
Aleksandr Noy ◽  
Nigel Neate ◽  
...  

<p>Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogramming for energy requirements in cancer. Consequently, our ability to modulate membrane redox systems may give rise to opportunities to modulate underlying biology. The current work aimed to develop a wireless bipolar electrochemical approach to form on-demand electron transfer across biological membranes. To achieve this goal, we show that using membrane inserted carbon nanotube porins that can act as bipolar nanoelectrodes, we could control electron flow with externally applied electric fields across membranes. Before this work, bipolar electrochemistry has been thought to require high applied voltages not compatible with biological systems. We show that bipolar electrochemical reaction via gold reduction at the nanotubes could be modulated at low cell-friendly voltages, providing an opportunity to use bipolar electrodes to control electron flux across membranes. Our observations present a new opportunity to use bipolar electrodes to alter cell behavior via wireless control of membrane electron transfer.</p>



2021 ◽  
Vol 264 ◽  
pp. 04030
Author(s):  
Ivan Bedritsky ◽  
Kamila Jurayeva ◽  
Zamira Nazirova ◽  
Laziz Bazarov

The article presented a mathematical analysis of a double-circuit parametric circuit of ferroresonance nature at the fundamental frequency, performed by the harmonic balance method. The adjustment, current-voltage, and load characteristics of the circuit are given. The possibility of using this circuit in voltage regulators with direct current output is proved. Parametric sources of secondary power supply, in particular voltage stabilizers of ferromagnetic and ferroresonance nature, are used in autonomous vehicles (for example, in spacecraft, some types of intelligent transport systems) and in renewable energy sources due to their ability to operate in heavy environments (high and low temperatures, radiation, strong magnetic or electric fields).



2021 ◽  
Author(s):  
Jacqueline M. Hicks ◽  
Yun-Chiao Yao ◽  
Sydney Barber ◽  
Nigel Neate ◽  
Julie Watts ◽  
...  

<p>Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogramming for energy requirements in cancer. Consequently, our ability to modulate membrane redox systems may give rise to opportunities to modulate underlying biology. The current work aimed to develop a wireless bipolar electrochemical approach to form on-demand electron transfer across biological membranes. To achieve this goal, we show that using membrane inserted carbon nanotube porins that can act as bipolar nanoelectrodes, we could control electron flow with externally applied electric fields across membranes. Before this work, bipolar electrochemistry has been thought to require high applied voltages not compatible with biological systems. We show that bipolar electrochemical reaction via gold reduction at the nanotubes could be modulated at low cell-friendly voltages, providing an opportunity to use bipolar electrodes to control electron flux across membranes. Our observations present a new opportunity to use bipolar electrodes to alter cell behavior via wireless control of membrane electron transfer.</p>



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Stömmer ◽  
Henrik Kiefer ◽  
Enzo Kopperger ◽  
Maximilian N. Honemann ◽  
Massimo Kube ◽  
...  

AbstractCreating artificial macromolecular transport systems that can support the movement of molecules along defined routes is a key goal of nanotechnology. Here, we report the bottom-up construction of a macromolecular transport system in which molecular pistons diffusively move through micrometer-long, hollow filaments. The pistons can cover micrometer distances in fractions of seconds. We build the system using multi-layer DNA origami and analyze the structures of the components using transmission electron microscopy. We study the motion of the pistons along the tubes using single-molecule fluorescence microscopy and perform Langevin simulations to reveal details of the free energy surface that directs the motions of the pistons. The tubular transport system achieves diffusivities and displacement ranges known from natural molecular motors and realizes mobility improvements over five orders of magnitude compared to previous artificial random walker designs. Electric fields can also be employed to actively pull the pistons along the filaments, thereby realizing a nanoscale electric rail system. Our system presents a platform for artificial motors that move autonomously driven by chemical fuels and for performing nanotribology studies, and it could form a basis for future molecular transportation networks.



Author(s):  
Kerstin Koch ◽  
Wilhelm Barthlott

The diversity of plant surface structures, evolved over 460 million years, has led to a large variety of highly adapted functional structures. The plant cuticle provides structural and chemical modifications for surface wetting, ranging from superhydrophilic to superhydrophobic. In this paper, the structural basics of superhydrophobic and superhydrophilic plant surfaces and their biological functions are introduced. Wetting in plants is influenced by the sculptures of the cells and by the fine structure of the surfaces, such as folding of the cuticle, or by epicuticular waxes. Hierarchical structures in plant surfaces are shown and further types of plant surface structuring leading to superhydrophobicity and superhydrophilicity are presented. The existing and potential uses of superhydrophobic and superhydrophilic surfaces for self-cleaning, drag reduction during moving in water, capillary liquid transport and other biomimetic materials are shown.



2021 ◽  
Author(s):  
Jacqueline M. Hicks ◽  
Yun-Chiao Yao ◽  
Sydney Barber ◽  
Nigel Neate ◽  
Julie Watts ◽  
...  

<p>Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogramming for energy requirements in cancer. Consequently, our ability to modulate membrane redox systems may give rise to opportunities to modulate underlying biology. The current work aimed to develop a wireless bipolar electrochemical approach to form on-demand electron transfer across biological membranes. To achieve this goal, we show that using membrane inserted carbon nanotube porins that can act as bipolar nanoelectrodes, we could control electron flow with externally applied electric fields across membranes. Before this work, bipolar electrochemistry has been thought to require high applied voltages not compatible with biological systems. We show that bipolar electrochemical reaction via gold reduction at the nanotubes could be modulated at low cell-friendly voltages, providing an opportunity to use bipolar electrodes to control electron flux across membranes. Our observations present a new opportunity to use bipolar electrodes to alter cell behavior via wireless control of membrane electron transfer.</p>



Author(s):  
R. R. Dils ◽  
P. S. Follansbee

Electric fields have been applied across oxides growing on a high temperature alloy and control of the oxidation of the material has been demonstrated. At present, three-fold increases in the oxidation rate have been measured in accelerating fields and the oxidation process has been completely stopped in a retarding field.The experiments have been conducted with an iron-base alloy, Pe 25Cr 5A1 0.1Y, although, in principle, any alloy capable of forming an adherent aluminum oxide layer during oxidation can be used. A specimen is polished and oxidized to produce a thin, uniform insulating layer on one surface. Three platinum electrodes are sputtered on the oxide surface and the specimen is reoxidized.



Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).



Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).



Author(s):  
John Silcox

Several aspects of magnetic and electric effects in electron microscope images are of interest and will be discussed here. Clearly electrons are deflected by magnetic and electric fields and can give rise to image detail. We will review situations in ferromagnetic films in which magnetic image effects are the predominant ones, others in which the magnetic effects give rise to rather subtle changes in diffraction contrast, cases of contrast at specimen edges due to leakage fields in both ferromagnets and superconductors and some effects due to electric fields in insulators.



Sign in / Sign up

Export Citation Format

Share Document