scholarly journals Intrinsic reconstruction of ice-I surfaces

2020 ◽  
Vol 6 (37) ◽  
pp. eabb7986
Author(s):  
N. Kawakami ◽  
K. Iwata ◽  
A. Shiotari ◽  
Y. Sugimoto

Understanding the precise atomic structure of ice surfaces is critical for revealing the mechanisms of physical and chemical phenomena at the surfaces, such as ice growth, melting, and chemical reactions. Nevertheless, no conclusive structure has been established. In this study, noncontact atomic force microscopy was used to address the characterization of the atomic structures of ice Ih(0001) and Ic(111) surfaces. The topmost hydrogen atoms are arranged with a short-range (2 × 2) order, independent of the ice thickness and growth substrates used. The electrostatic repulsion between non–hydrogen-bonded water molecules at the surface causes a reduction in the number of the topmost hydrogen atoms together with a distortion of the ideal honeycomb arrangement of water molecules, leading to a short-range–ordered surface reconstruction.

2013 ◽  
Vol 821-822 ◽  
pp. 274-277
Author(s):  
Tao Chen ◽  
Hong Ling Liu ◽  
Wei Dong Yu

In order to understand the influence of stretching on the nanotribological properties of human hair, the European hair with stretching ratios at 20, 40, 60 and 80% were studied using atomic force microscopy (AFM). The results show that appropriate stretching ratios (40-60%) make the European hair surface smoother and the friction measurements also verify the result. When the stretching ratio is 80%, the European hair has the highest coefficient of friction. The reason is that cuticle damages lead to the local ratchet and collision between AFM tip and the sample obviously increased. With the increase of stretching ratios, the adhesive force of European hair is nonlinear change, which is attributed to the influence of contact area, water molecules absorbed and the amount of polar molecules.


Author(s):  
Tabassamul Haque ◽  
Ardian Morina ◽  
Anne Neville

Diamond Like Carbon (DLC) coatings are becoming very popular for automotive tribo-components as they can offer excellent tribological properties resulting in improved fuel economy and reducing dependence on harmful components of existing additives. The tribochemical interactions of low hydrogen containing DLC coating with lubricants, basically customised for ferrous materials, are yet to be well understood. In this work, an experimental study has been performed to understand the synergistic and antagonistic effects of low friction and antiwear additives on a 15 at. % hydrogen containing DLC coating. Surface sensitive analytical techniques, such as atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to perform physical and chemical characterization of the tribofilms.


1999 ◽  
Vol 71 (2) ◽  
pp. 379-383 ◽  
Author(s):  
David W. Lehmpuhl ◽  
Kathryn A. Ramirez-Aguilar ◽  
Amy E. Michel ◽  
Kathy L. Rowlen ◽  
John W. Birks

2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Author(s):  
Willian Silva Conceição ◽  
Ştefan Ţălu ◽  
Robert Saraiva Matos ◽  
Glenda Quaresma Ramos ◽  
Fidel Guereiro Zayas ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Arnaud Millet

The mechanosensitivity of cells has recently been identified as a process that could greatly influence a cell’s fate. To understand the interaction between cells and their surrounding extracellular matrix, the characterization of the mechanical properties of natural polymeric gels is needed. Atomic force microscopy (AFM) is one of the leading tools used to characterize mechanically biological tissues. It appears that the elasticity (elastic modulus) values obtained by AFM presents a log-normal distribution. Despite its ubiquity, the log-normal distribution concerning the elastic modulus of biological tissues does not have a clear explanation. In this paper, we propose a physical mechanism based on the weak universality of critical exponents in the percolation process leading to gelation. Following this, we discuss the relevance of this model for mechanical signatures of biological tissues.


2013 ◽  
Vol 22 ◽  
pp. 85-93
Author(s):  
Shuang Yi Liu ◽  
Min Min Tang ◽  
Ai Kah Soh ◽  
Liang Hong

In-situ characterization of the mechanical behavior of geckos spatula has been carried out in detail using multi-mode AFM system. Combining successful application of a novel AFM mode, i.e. Harmonix microscopy, the more detail elastic properties of spatula is brought to light. The results obtained show the variation of the mechanical properties on the hierarchical level of a seta, even for the different locations, pad and stalk of the spatula. A model, which has been validated using the existing experimental data and phenomena as well as theoretical predictions for geckos adhesion, crawling and self-cleaning of spatulae, is proposed in this paper. Through contrast of adhesive and craw ability of the gecko on the surfaces with different surface roughness, and measurement of the surface adhesive behaviors of Teflon, the most effective adhesion of the gecko is more dependent on the intrinsic properties of the surface which is adhered.


Sign in / Sign up

Export Citation Format

Share Document