scholarly journals Vacancy ordering induced topological electronic transition in bulk Eu2ZnSb2

2021 ◽  
Vol 7 (6) ◽  
pp. eabd6162
Author(s):  
Honghao Yao ◽  
Chen Chen ◽  
Wenhua Xue ◽  
Fengxian Bai ◽  
Feng Cao ◽  
...  

Metal-semiconductor transitions from changes in edge chirality from zigzag to armchair were observed in many nanoribbon materials, especially those based on honeycomb lattices. Here, this is generalized to bulk complex Zintl semiconductors, exemplified by Eu2ZnSb2 where the Zn vacancy ordering plays an essential role. Five Eu2ZnSb2 structural models are proposed to guide transmission electron microscopy imaging. Zigzag vacancy ordering models show clear metallicity, while the armchair models are semiconducting with indirect bandgaps that monotonously increase with the relative distances between neighboring ZnSb2 chains. Topological electronic structure changes based on cation ordering in a Zintl compound point toward tunable and possibly switchable topological behavior, since cations in these are often mobile. Thus, their orderings can often be adjusted by temperature, minor alloying, and other approaches. We explain the electronic structure of an interesting thermoelectric and point the way to previously unidentified types of topological electronic transitions in Zintl compounds.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 151
Author(s):  
Tim Küllmey ◽  
Miguel González ◽  
Eva M. Heppke ◽  
Beate Paulus

Exploring alternatives to the Cu2ZnSnS4 kesterite solar cell absorber, we have calculated first principle enthalpies of different plausible structural models (kesterite, stannite, P4¯ and GeSb type) for Cu2FeSnS4 and Cu2MnSnS4 to identify low and high pressure phases. Due to the magnetic nature of Fe and Mn atoms we included a ferromagnetic (FM) and anti-ferromagnetic (AM) phase for each structural model. For Cu2FeSnS4 we predict the following transitions: P4¯ (AM) →16.3GPa GeSb type (AM) →23.0GPa GeSb type (FM). At the first transition the electronic structure changes from semi-conducting to metallic and remains metallic throughout the second transition. For Cu2MnSnS4, we predict a direct AM (kesterite) to FM (GeSb-type) transitions at somewhat lower pressure (12.1 GPa). The GeSb-type structure also shows metallic behaviour.


Author(s):  
F.-R. Chen ◽  
T. L. Lee ◽  
L. J. Chen

YSi2-x thin films were grown by depositing the yttrium metal thin films on (111)Si substrate followed by a rapid thermal annealing (RTA) at 450 to 1100°C. The x value of the YSi2-x films ranges from 0 to 0.3. The (0001) plane of the YSi2-x films have an ideal zero lattice mismatch relative to (111)Si surface lattice. The YSi2 has the hexagonal AlB2 crystal structure. The orientation relationship with Si was determined from the diffraction pattern shown in figure 1(a) to be and . The diffraction pattern in figure 1(a) was taken from a specimen annealed at 500°C for 15 second. As the annealing temperature was increased to 600°C, superlattice diffraction spots appear at position as seen in figure 1(b) which may be due to vacancy ordering in the YSi2-x films. The ordered vacancies in YSi2-x form a mesh in Si plane suggested by a LEED experiment.


Microscopy ◽  
2020 ◽  
Author(s):  
Xiaoguang Li ◽  
Kazutaka Mitsuishi ◽  
Masaki Takeguchi

Abstract Liquid cell transmission electron microscopy (LCTEM) enables imaging of dynamic processes in liquid with high spatial and temporal resolution. The widely used liquid cell (LC) consists of two stacking microchips with a thin wet sample sandwiched between them. The vertically overlapped electron-transparent membrane windows on the microchips provide passage for the electron beam. However, microchips with imprecise dimensions usually cause poor alignment of the windows and difficulty in acquiring high-quality images. In this study, we developed a new and efficient microchip fabrication process for LCTEM with a large viewing area (180 µm × 40 µm) and evaluated the resultant LC. The new positioning reference marks on the surface of the Si wafer dramatically improve the precision of dicing the wafer, making it possible to accurately align the windows on two stacking microchips. The precise alignment led to a liquid thickness of 125.6 nm close to the edge of the viewing area. The performance of our LC was demonstrated by in situ transmission electron microscopy imaging of the dynamic motions of 2-nm Pt particles. This versatile and cost-effective microchip production method can be used to fabricate other types of microchips for in situ electron microscopy.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Qianheng Du ◽  
Lijun Wu ◽  
Huibo Cao ◽  
Chang-Jong Kang ◽  
Christie Nelson ◽  
...  

AbstractIron diantimonide is a material with the highest known thermoelectric power. By combining scanning transmission electron microscopic study with electronic transport neutron, X-ray scattering, and first principle calculation, we identify atomic defects that control colossal thermopower magnitude and nanoprecipitate clusters with Sb vacancy ordering, which induce additional phonon scattering and substantially reduce thermal conductivity. Defects are found to cause rather weak but important monoclinic distortion of the unit cell Pnnm → Pm. The absence of Sb along [010] for high defect concentration forms conducting path due to Fe d orbital overlap. The connection between atomic defect anisotropy and colossal thermopower in FeSb2 paves the way for the understanding and tailoring of giant thermopower in related materials.


2010 ◽  
Vol 16 (S2) ◽  
pp. 80-81 ◽  
Author(s):  
SD Findlay ◽  
N Shibata ◽  
H Sawada ◽  
E Okunishi ◽  
Y Kondo ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


Sign in / Sign up

Export Citation Format

Share Document