scholarly journals Discovery and mechanism of a pH-dependent dual-binding-site switch in the interaction of a pair of protein modules

2020 ◽  
Vol 6 (43) ◽  
pp. eabd7182
Author(s):  
Xingzhe Yao ◽  
Chao Chen ◽  
Yefei Wang ◽  
Sheng Dong ◽  
Ya-Jun Liu ◽  
...  

Many important proteins undergo pH-dependent conformational changes resulting in “on-off” switches for protein function, which are essential for regulation of life processes and have wide application potential. Here, we report a pair of cellulosomal assembly modules, comprising a cohesin and a dockerin from Clostridium acetobutylicum, which interact together following a unique pH-dependent switch between two functional sites rather than on-off states. The two cohesin-binding sites on the dockerin are switched from one to the other at pH 4.8 and 7.5 with a 180° rotation of the bound dockerin. Combined analysis by nuclear magnetic resonance spectroscopy, crystal structure determination, mutagenesis, and isothermal titration calorimetry elucidates the chemical and structural mechanism of the pH-dependent switching of the binding sites. The pH-dependent dual-binding-site switch not only represents an elegant example of biological regulation but also provides a new approach for developing pH-dependent protein devices and biomaterials beyond an on-off switch for biotechnological applications.

1992 ◽  
Vol 285 (2) ◽  
pp. 419-425 ◽  
Author(s):  
U Christensen ◽  
L Mølgaard

The kinetics of a series of Glu-plasminogen ligand-binding processes were investigated at pH 7.8 and 25 degrees C (in 0.1 M-NaCl). The ligands include compounds analogous to C-terminal lysine residues and to normal lysine residues. Changes of the Glu-plasminogen protein fluorescence were measured in a stopped-flow instrument as a function of time after rapid mixing of Glu-plasminogen and ligand at various concentrations. Large positive fluorescence changes (approximately 10%) accompany the ligand-induced conformational changes of Glu-plasminogen resulting from binding at weak lysine-binding sites. Detailed studies of the concentration-dependencies of the equilibrium signals and the rate constants of the process induced by various ligands showed the conformational change to involve two sites in a concerted positive co-operative process with three steps: (i) binding of a ligand at a very weak lysine-binding site that preferentially, but not exclusively, binds C-terminal-type lysine ligands, (ii) the rate-determining actual-conformational-change step and (iii) binding of one more lysine ligand at a second weak lysine-binding site that then binds the ligand more tightly. Further, totally independent initial small negative fluorescence changes (approximately 2-4%) corresponding to binding at the strong lysine-binding site of kringle 1 [Sottrup-Jensen, Claeys, Zajdel, Petersen & Magnusson (1978) Prog. Chem. Fibrinolysis Thrombolysis 3, 191-209] were observed for the C-terminal-type ligands. The finding that the conformational change in Glu-plasminogen involves two weak lysine-binding sites indicates that the effect cannot be assigned to any single kringle and that the problem of whether kringle 4 or kringle 5 is responsible for the process resolves itself. Probably kringle 4 and 5 are both participating. The involvement of two lysine binding-sites further makes the high specificity of Glu-plasminogen effectors more conceivable.


2014 ◽  
Author(s):  
Sarah H Carl ◽  
Steven Russell

Background: Group B Sox proteins are a highly conserved group of transcription factors that act extensively to coordinate nervous system development in higher metazoans while showing both co-expression and functional redundancy across a broad group of taxa. In Drosophila melanogaster, the two group B Sox proteins Dichaete and SoxNeuro show widespread common binding across the genome. While some instances of functional compensation have been observed in Drosophila, the function of common binding and the extent of its evolutionary conservation is not known. Results: We used DamID-seq to examine the genome-wide binding patterns of Dichaete and SoxNeuro in four species of Drosophila. Through a quantitative comparison of Dichaete binding, we evaluated the rate of binding site turnover across the genome as well as at specific functional sites. We also examined the presence of Sox motifs within binding intervals and the correlation between sequence conservation and binding conservation. To determine whether common binding between Dichaete and SoxNeuro is conserved, we performed a detailed analysis of the binding patterns of both factors in two species. Conclusion: We find that, while the regulatory networks driven by Dichaete and SoxNeuro are largely conserved across the drosophilids studied, binding site turnover is widespread and correlated with phylogenetic distance. Nonetheless, binding is preferentially conserved at known cis-regulatory modules and core, independently verified binding sites. We observed the strongest binding conservation at sites that are commonly bound by Dichaete and SoxNeuro, suggesting that these sites are functionally important. Our analysis provides insights into the evolution of group B Sox function, highlighting the specific conservation of shared binding sites and suggesting alternative sources of neofunctionalisation between paralogous family members.


1999 ◽  
Vol 114 (1) ◽  
pp. 71-84 ◽  
Author(s):  
James A. Morrill ◽  
Roderick MacKinnon

The pore of the catfish olfactory cyclic nucleotide–gated (CNG) channel contains four conserved glutamate residues, one from each subunit, that form a high-affinity binding site for extracellular divalent cations. Previous work showed that these residues form two independent and equivalent high-pKa (∼7.6) proton binding sites, giving rise to three pH-dependent conductance states, and it was suggested that the sites were formed by pairing of the glutamates into two independent carboxyl-carboxylates. To test further this physical picture, wild-type CNG subunits were coexpressed in Xenopus oocytes with subunits lacking the critical glutamate residue, and single channel currents through hybrid CNG channels containing one to three wild-type (WT) subunits were recorded. One of these hybrid channels had two pH-dependent conductance states whose occupancy was controlled by a single high-pKa protonation site. Expression of dimers of concatenated CNG channel subunits confirmed that this hybrid contained two WT and two mutant subunits, supporting the idea that a single protonation site is made from two glutamates (dimer expression also implied the subunit makeup of the other hybrid channels). Thus, the proton binding sites in the WT channel occur as a result of the pairing of two glutamate residues. This conclusion places these residues in close proximity to one another in the pore and implies that at any instant in time detailed fourfold symmetry is disrupted.


2021 ◽  
Author(s):  
Hayden Burdett ◽  
Xiahao Hu ◽  
Maxwell X Rank ◽  
Natsumi Maruta ◽  
Bostjan Kobe

TIR domains are signalling domains present in plant nucleotide-binding leucine-rich repeat receptors (NLRs), with key roles in plant innate immunity. They are required for the induction of a hypersensitive response (HR) in effector-triggered immunity, but the mechanism by which this occurs is not yet fully understood. It has been recently shown that the TIR domains from several plant NLRs possess NADase activity. The oligomeric structure of TIR-containing NLRs ROQ1 and RPP1 reveals how the TIR domains arrange into an active conformation, but low resolution around the NAD+ binding sites leaves questions unanswered about the molecular mechanisms linking self-association and NADase activity. In this study, a number of crystal structures of the TIR domain from the grapevine NLR RUN1 reveal how self-association and enzymatic activity may be linked. Structural features previously proposed to play roles involve the ″AE interface″ (mediated by helices A and E), the ″BB-loop″ (connecting β-strand B and helix B in the structure), and the ″BE interface″ (mediated by the BB-loop from one TIR and the ″DE surface″ of another). We demonstrate that self-association through the AE interface induces conformational changes in the NAD+-binding site, shifting the BB-loop away from the catalytic site and allowing NAD+ to access the active site. We propose that an intact ″DE surface″ is necessary for production of the signalling product (variant cyclic ADPR), as it constitutes part of the active site. Addition of NAD+ or NADP+ is not sufficient to induce self-association, suggesting that NAD+ binding occurs after TIR self-association. Our study identifies a mechanistic link between TIR self-association and NADase activity.


2015 ◽  
Vol 71 (3) ◽  
pp. 541-554 ◽  
Author(s):  
Shigeki Arai ◽  
Yasushi Yonezawa ◽  
Nobuo Okazaki ◽  
Fumiko Matsumoto ◽  
Chie Shibazaki ◽  
...  

Environmentally friendly absorbents are needed for Sr2+and Cs+, as the removal of the radioactive Sr2+and Cs+that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs+or Sr2+. The crystal structure of a halophilic β-lactamase fromChromohalobactersp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space groupP31using X-ray crystallography. Moreover, the locations of bound Sr2+and Cs+ions were identified by anomalous X-ray diffraction. The location of one Cs+-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na+(90 mMNa+/10 mMCs+). From an activity assay using isothermal titration calorimetry, the bound Sr2+and Cs+ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs+-binding site provides important information that is useful for the design of artificial Cs+-binding sites that may be useful in the bioremediation of radioactive isotopes.


2005 ◽  
Vol 102 (4) ◽  
pp. 799-805 ◽  
Author(s):  
Renyu Liu ◽  
Roderic G. Eckenhoff

Background Enflurane and isoflurane are structural isomers with different anesthetic potencies and side effects. It is not clear whether these differences are produced by differing occupancy of common protein binding sites or by occupancy of different sites, but the very similar molecular properties make the latter possibility unlikely. In this study, the authors examined binding site selectivity of these anesthetics in human serum albumin (HSA). Methods Binding of isoflurane and enflurane with HSA was determined with isothermal titration calorimetry. Competition with known ligands (propofol) allowed localization of binding sites within the HSA molecule. Molecular properties of isoflurane and enflurane were calculated. Results Isoflurane binds HSA with higher affinity but smaller total enthalpy than enflurane. Enthalpogram analysis suggested that isoflurane bound a single site, whereas enflurane bound two. Competition experiments indicated that enflurane and isoflurane share one binding site, which also binds propofol. The additional enflurane site binds propofol but not isoflurane. Increased salt concentration decreased the affinity for isoflurane but not for enflurane. The dipole moment of isoflurane is higher than that of enflurane, and the isoflurane binding site is more polar. Conclusion These data indicate two binding sites of different character for the haloether anesthetics on HSA. One site is more polar and prefers isoflurane, presumably because of its larger dipole. The second site prefers the less polar enflurane. Therefore, weak polar interactions confer considerable selectivity, and differences in drug action may arise from occupancy of different protein sites.


2021 ◽  
Author(s):  
Chih-Ting Huang ◽  
Yei-Chen Lai ◽  
Szu-Yun Chen ◽  
Meng-Ru Ho ◽  
Yun-Wei Chiang ◽  
...  

Abstract. Trigger factor (TF) is a highly conserved multi-domain molecular chaperone that exerts its chaperone activity at the ribosomal tunnel exit from which newly synthesized nascent chains emerge. TF also displays promiscuous substrate binding for a large number of cytosolic proteins independent of ribosome binding. We asked how TF recognizes a variety of substrates while existing in a monomer-dimer equilibrium. Paramagnetic NMR, electron spin resonance spectroscopy and chemical crosslink show that dimeric TF displays a high degree of structural polymorphism in solution. A series of peptides has been generated to quantify their TF binding affinities in relation with their sequence compositions. The results confirmed a previous predication that TF preferentially binds to peptide fragments that are rich in aromatic and positively charged amino acids. NMR paramagnetic relaxation enhancement analysis showed that TF utilizes multiple binding sites, located in the chaperone domain and part of the prolyl trans/cis isomerisation domain, to interact with these peptides. Dimerization of TF effectively sequesters most of substrate binding sites, which are expected to become accessible upon binding to the ribosome as a monomer. As TF lacks ATPase activity, which is commonly used to trigger conformational changes within molecular chaperones in action, the ribosome-binding-associated disassembly and conformational rearrangements may be the underlying regulatory mechanism of its chaperone activity.


2005 ◽  
Vol 83 (4) ◽  
pp. 555-565 ◽  
Author(s):  
Philippe T Georgel

The events leading to transcription initiation of the Drosophila melanogaster heat-shock protein (hsp)70 gene have been demonstrated to be directly connected with nucleosome remodeling factor and GAGA-dependent chromatin remodeling on its promoter region. To investigate the relative importance of the multiple GAGA-factor binding sites in the process of chromatin remodeling and their effect on DNA conformation, the position of nucleosomes over the proximal region of the promoter was mapped. No real-positioned nucleosome was detected. By matching the relative position of the GAGA-factor binding sites with the distribution of nucleosomes over the hsp70 promoter, the GAGA site 2 appeared to be the most accessible, i.e., located close to a nucleosomal edge or within the linker DNA. This result, combined with previous observations, suggest a link between increased GAGA-factor accessibility and efficiency of transcription initiation. The effect of GAGA-binding-site mutations, both individually and in combination, on DNA structure and nucleosome remodeling was assessed using free DNA and fly embryo extract chromatin templates assembled in vitro. Results indicated that both the number of functional sites and their positions within the chromatin were important determinants for nucleosome-remodeling efficiency. Ultimately, the degree of accessibility of the GAGA factor to its cognate binding site(s) appears to be proportional to chromatin-remodeling competency of the hsp70 promoter.Key words: chromatin, remodeling, nucleosome, hsp70, GAGA, Drosophila.


2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i726-i734
Author(s):  
Charles A Santana ◽  
Sabrina de A Silveira ◽  
João P A Moraes ◽  
Sandro C Izidoro ◽  
Raquel C de Melo-Minardi ◽  
...  

Abstract Motivation The discovery of protein–ligand-binding sites is a major step for elucidating protein function and for investigating new functional roles. Detecting protein–ligand-binding sites experimentally is time-consuming and expensive. Thus, a variety of in silico methods to detect and predict binding sites was proposed as they can be scalable, fast and present low cost. Results We proposed Graph-based Residue neighborhood Strategy to Predict binding sites (GRaSP), a novel residue centric and scalable method to predict ligand-binding site residues. It is based on a supervised learning strategy that models the residue environment as a graph at the atomic level. Results show that GRaSP made compatible or superior predictions when compared with methods described in the literature. GRaSP outperformed six other residue-centric methods, including the one considered as state-of-the-art. Also, our method achieved better results than the method from CAMEO independent assessment. GRaSP ranked second when compared with five state-of-the-art pocket-centric methods, which we consider a significant result, as it was not devised to predict pockets. Finally, our method proved scalable as it took 10–20 s on average to predict the binding site for a protein complex whereas the state-of-the-art residue-centric method takes 2–5 h on average. Availability and implementation The source code and datasets are available at https://github.com/charles-abreu/GRaSP. Supplementary information Supplementary data are available at Bioinformatics online.


1995 ◽  
Vol 15 (5) ◽  
pp. 317-326 ◽  
Author(s):  
Tohru Kanazawa ◽  
Hiroshi Suzuki ◽  
Takashi Daiho ◽  
Kazuo Yamasaki

Changes in the fluoresence of N-acetyl-N′-(5-sulfo-1-naphthyl)ethylenediamine (EDANS), being attached to Cys-674 of sarcoplasmic reticulum Ca2+-ATPase without affecting the catalytic activity, as well as changes in the intrinsic tryptophan fluorescence were followed throughout the catalytic cycle by the steady-state measurements and the stopped-flow spectrofluorometry. EDANS-fluorescence changes reflect conformational changes near the ATP binding site in the cytoplasmic domain, while tryptophan-fluorescence changes most probably reflect conformational changes in or near the transmembrane domain in which the Ca2+ binding sites are located. Formation of the phosphoenzyme intermediates (EP) was also followed by the continuous flow-rapid quenching method. The kinetic analysis of EDANS-fluorescence changes and EP formation revealed that, when ATP is added to the calcium-activated enzyme, conformational changes in the ATP binding site occur in three successive reaction steps; conformational change in the calcium enzyme substrate complex, formation of ADP-sensitive EP, and transition of ADP-sensitive EP to ADP-insensitive EP. In contrast, the ATP-induced tryptophan-fluorescence changes occur only in the latter two steps. Thus, we conclude that conformational changes in the ATP binding site in the cytoplasmic domain are transmitted to the Ca2+-binding sites in the transmembrane domain in these latter two steps.


Sign in / Sign up

Export Citation Format

Share Document