scholarly journals Common binding by redundant group B Sox proteins is evolutionarily conserved in Drosophila

2014 ◽  
Author(s):  
Sarah H Carl ◽  
Steven Russell

Background: Group B Sox proteins are a highly conserved group of transcription factors that act extensively to coordinate nervous system development in higher metazoans while showing both co-expression and functional redundancy across a broad group of taxa. In Drosophila melanogaster, the two group B Sox proteins Dichaete and SoxNeuro show widespread common binding across the genome. While some instances of functional compensation have been observed in Drosophila, the function of common binding and the extent of its evolutionary conservation is not known. Results: We used DamID-seq to examine the genome-wide binding patterns of Dichaete and SoxNeuro in four species of Drosophila. Through a quantitative comparison of Dichaete binding, we evaluated the rate of binding site turnover across the genome as well as at specific functional sites. We also examined the presence of Sox motifs within binding intervals and the correlation between sequence conservation and binding conservation. To determine whether common binding between Dichaete and SoxNeuro is conserved, we performed a detailed analysis of the binding patterns of both factors in two species. Conclusion: We find that, while the regulatory networks driven by Dichaete and SoxNeuro are largely conserved across the drosophilids studied, binding site turnover is widespread and correlated with phylogenetic distance. Nonetheless, binding is preferentially conserved at known cis-regulatory modules and core, independently verified binding sites. We observed the strongest binding conservation at sites that are commonly bound by Dichaete and SoxNeuro, suggesting that these sites are functionally important. Our analysis provides insights into the evolution of group B Sox function, highlighting the specific conservation of shared binding sites and suggesting alternative sources of neofunctionalisation between paralogous family members.

2021 ◽  
Vol 118 (3) ◽  
pp. e2009493118
Author(s):  
Yufei Shan ◽  
Stephen Matthew Farmer ◽  
Susan Wray

Stromal cell-derived factor-1 (SDF-1) and chemokine receptor type 4 (CXCR4) are regulators of neuronal migration (e.g., GnRH neurons, cortical neurons, and hippocampal granule cells). However, how SDF-1/CXCR4 alters cytoskeletal components remains unclear. Developmentally regulated brain protein (drebrin) stabilizes actin polymerization, interacts with microtubule plus ends, and has been proposed to directly interact with CXCR4 in T cells. The current study examined, in mice, whether CXCR4 under SDF-1 stimulation interacts with drebrin to facilitate neuronal migration. Bioinformatic prediction of protein–protein interaction highlighted binding sites between drebrin and crystallized CXCR4. In migrating GnRH neurons, drebrin, CXCR4, and the microtubule plus-end binding protein EB1 were localized close to the cell membrane. Coimmunoprecipitation (co-IP) confirmed a direct interaction between drebrin and CXCR4 using wild-type E14.5 whole head and a GnRH cell line. Analysis of drebrin knockout (DBN1 KO) mice showed delayed migration of GnRH cells into the brain. A decrease in hippocampal granule cells was also detected, and co-IP confirmed a direct interaction between drebrin and CXCR4 in PN4 hippocampi. Migration assays on primary neurons established that inhibiting drebrin (either pharmacologically or using cells from DBN1 KO mice) prevented the effects of SDF-1 on neuronal movement. Bioinformatic prediction then identified binding sites between drebrin and the microtubule plus end protein, EB1, and super-resolution microscopy revealed decreased EB1 and drebrin coexpression after drebrin inhibition. Together, these data show a mechanism by which a chemokine, via a membrane receptor, communicates with the intracellular cytoskeleton in migrating neurons during central nervous system development.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Matti F. Pronker ◽  
Hugo van den Hoek ◽  
Bert J. C. Janssen

Abstract Background Olfactomedin-1 (Olfm1; also known as Noelin or Pancortin) is a highly-expressed secreted brain and retina protein and its four isoforms have different roles in nervous system development and function. Structural studies showed that the long Olfm1 isoform BMZ forms a disulfide-linked tetramer with a V-shaped architecture. The tips of the Olfm1 “V” each consist of two C-terminal β-propeller domains that enclose a calcium binding site. Functional characterisation of Olfm1 may be aided by new biochemical tools derived from these core structural elements. Results Here we present the production, purification and structural analysis of three novel monomeric, dimeric and tetrameric forms of mammalian Olfm1 for functional studies. We characterise these constructs structurally by high-resolution X-ray crystallography and small-angle X-ray scattering. The crystal structure of the Olfm1 β-propeller domain (to 1.25 Å) represents the highest-resolution structure of an olfactomedin family member to date, revealing features such as a hydrophilic tunnel containing water molecules running into the core of the domain where the calcium binding site resides. The shorter Olfactomedin-1 isoform BMY is a disulfide-linked tetramer with a shape similar to the corresponding region in the longer BMZ isoform. Conclusions These recombinantly-expressed protein tools should assist future studies, for example of biophysical, electrophysiological or morphological nature, to help elucidate the functions of Olfm1 in the mature mammalian brain. The control over the oligomeric state of Olfm1 provides a firm basis to better understand the role of Olfm1 in the (trans-synaptic) tethering or avidity-mediated clustering of synaptic receptors such as post-synaptic AMPA receptors and pre-synaptic amyloid precursor protein. In addition, the variation in domain composition of these protein tools provides a means to dissect the Olfm1 regions important for receptor binding.


2021 ◽  
Author(s):  
Tarang K Mehta ◽  
Luca Penso-Dolfin ◽  
Will K Nash ◽  
Sushmita Roy ◽  
Federica Di Palma ◽  
...  

The divergence of regulatory regions and gene regulatory network (GRN) rewiring is a key driver of cichlid phenotypic diversity. However, the contribution of miRNA binding site turnover has yet to be linked to GRN evolution across cichlids. Here, we extend our previous studies by analysing the selective constraints driving evolution of miRNA and transcription factor (TF) binding sites of target genes, to infer instances of cichlid GRN rewiring associated with regulatory binding site turnover. Comparative analyses identified increased species-specific networks that are functionally associated to traits of cichlid phenotypic diversity. The evolutionary rewiring is associated with differential models of miRNA snd TF binding site turnover, driven by a high proportion of fast-evolving polymorphic sites in adaptive trait genes compared to subsets of random genes. Positive selection acting upon discrete mutations in these regulatory regions is likely to be an important mechanism in rewiring GRNs in rapidly radiating cichlids. Regulatory variants of functionally associated miRNA and TF binding sites of visual opsin genes differentially segregate according to phylogeny and ecology of Lake Malawi species, identifying both rewired e.g. clade-specific and conserved network motifs of adaptive trait associated GRNs. Our approach revealed several novel candidate regulators, regulatory regions and three-node motifs across cichlid genomes with previously reported associations to known adaptive evolutionary traits.


2020 ◽  
Vol 6 (43) ◽  
pp. eabd7182
Author(s):  
Xingzhe Yao ◽  
Chao Chen ◽  
Yefei Wang ◽  
Sheng Dong ◽  
Ya-Jun Liu ◽  
...  

Many important proteins undergo pH-dependent conformational changes resulting in “on-off” switches for protein function, which are essential for regulation of life processes and have wide application potential. Here, we report a pair of cellulosomal assembly modules, comprising a cohesin and a dockerin from Clostridium acetobutylicum, which interact together following a unique pH-dependent switch between two functional sites rather than on-off states. The two cohesin-binding sites on the dockerin are switched from one to the other at pH 4.8 and 7.5 with a 180° rotation of the bound dockerin. Combined analysis by nuclear magnetic resonance spectroscopy, crystal structure determination, mutagenesis, and isothermal titration calorimetry elucidates the chemical and structural mechanism of the pH-dependent switching of the binding sites. The pH-dependent dual-binding-site switch not only represents an elegant example of biological regulation but also provides a new approach for developing pH-dependent protein devices and biomaterials beyond an on-off switch for biotechnological applications.


2005 ◽  
Vol 83 (4) ◽  
pp. 555-565 ◽  
Author(s):  
Philippe T Georgel

The events leading to transcription initiation of the Drosophila melanogaster heat-shock protein (hsp)70 gene have been demonstrated to be directly connected with nucleosome remodeling factor and GAGA-dependent chromatin remodeling on its promoter region. To investigate the relative importance of the multiple GAGA-factor binding sites in the process of chromatin remodeling and their effect on DNA conformation, the position of nucleosomes over the proximal region of the promoter was mapped. No real-positioned nucleosome was detected. By matching the relative position of the GAGA-factor binding sites with the distribution of nucleosomes over the hsp70 promoter, the GAGA site 2 appeared to be the most accessible, i.e., located close to a nucleosomal edge or within the linker DNA. This result, combined with previous observations, suggest a link between increased GAGA-factor accessibility and efficiency of transcription initiation. The effect of GAGA-binding-site mutations, both individually and in combination, on DNA structure and nucleosome remodeling was assessed using free DNA and fly embryo extract chromatin templates assembled in vitro. Results indicated that both the number of functional sites and their positions within the chromatin were important determinants for nucleosome-remodeling efficiency. Ultimately, the degree of accessibility of the GAGA factor to its cognate binding site(s) appears to be proportional to chromatin-remodeling competency of the hsp70 promoter.Key words: chromatin, remodeling, nucleosome, hsp70, GAGA, Drosophila.


2021 ◽  
Vol 14 ◽  
Author(s):  
Milena Stevanovic ◽  
Danijela Drakulic ◽  
Andrijana Lazic ◽  
Danijela Stanisavljevic Ninkovic ◽  
Marija Schwirtlich ◽  
...  

The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.


1993 ◽  
Vol 13 (3) ◽  
pp. 1590-1598
Author(s):  
R St-Arnaud ◽  
J M Moir

The Wnt-1 proto-oncogene is essential for proper development of the midbrain and is expressed in a spatially and temporally restricted manner during central nervous system development in mice. In vitro, the gene is specifically transcribed during the retinoic acid (RA)-induced neuroectodermal differentiation of the P19 line of embryonal carcinoma cells. The P19 cells differentiate into neurons, astrocytes, and fibroblast-like cells when treated with RA. Treatment of the cells with dimethyl sulfoxide leads to differentiation along mesodermal lineages, including skeletal and cardiac muscle. We have used the P19 cell line to study the Wnt-1 promoter and identify and characterize the transcription factor(s) that regulates the differentiation-specific transcription of Wnt-1 in RA-treated P19 cultures. Transient-transfection assays have revealed that a 230-bp region comprising positions -278 to -47 of the 5' upstream Wnt-1 sequence was sufficient to direct RA-specific transcription. This promoter fragment was shown to contain a binding site for a nuclear factor that was not detected in undifferentiated P19 stem cells or their dimethyl sulfoxide-treated derivatives but was induced in differentiating RA-treated cells. This factor was termed Wnt-1-inducing factor-1 (WiF-1). DNase I footprinting analysis has identified the G/C-rich WiF-1 binding site, and UV cross-linking studies have shown that WiF-1 is a protein with an M(r) of 65,000. WiF-1 binding activity was also detected in postpubertal mouse testis, the only tissue that expresses Wnt-1 in adults. Site-directed mutations that inhibited WiF-1 binding to the Wnt-1 promoter concomitantly abolished the activity of the promoter in RA-treated P19 cells. The active WiF-1 protein was purified by DNA affinity chromatography. Our data suggest that WiF-1 is a novel G/C box-binding transcription factor and support a physiological role for WiF-1 in the developmentally regulated expression of Wnt-1.


1993 ◽  
Vol 13 (3) ◽  
pp. 1590-1598 ◽  
Author(s):  
R St-Arnaud ◽  
J M Moir

The Wnt-1 proto-oncogene is essential for proper development of the midbrain and is expressed in a spatially and temporally restricted manner during central nervous system development in mice. In vitro, the gene is specifically transcribed during the retinoic acid (RA)-induced neuroectodermal differentiation of the P19 line of embryonal carcinoma cells. The P19 cells differentiate into neurons, astrocytes, and fibroblast-like cells when treated with RA. Treatment of the cells with dimethyl sulfoxide leads to differentiation along mesodermal lineages, including skeletal and cardiac muscle. We have used the P19 cell line to study the Wnt-1 promoter and identify and characterize the transcription factor(s) that regulates the differentiation-specific transcription of Wnt-1 in RA-treated P19 cultures. Transient-transfection assays have revealed that a 230-bp region comprising positions -278 to -47 of the 5' upstream Wnt-1 sequence was sufficient to direct RA-specific transcription. This promoter fragment was shown to contain a binding site for a nuclear factor that was not detected in undifferentiated P19 stem cells or their dimethyl sulfoxide-treated derivatives but was induced in differentiating RA-treated cells. This factor was termed Wnt-1-inducing factor-1 (WiF-1). DNase I footprinting analysis has identified the G/C-rich WiF-1 binding site, and UV cross-linking studies have shown that WiF-1 is a protein with an M(r) of 65,000. WiF-1 binding activity was also detected in postpubertal mouse testis, the only tissue that expresses Wnt-1 in adults. Site-directed mutations that inhibited WiF-1 binding to the Wnt-1 promoter concomitantly abolished the activity of the promoter in RA-treated P19 cells. The active WiF-1 protein was purified by DNA affinity chromatography. Our data suggest that WiF-1 is a novel G/C box-binding transcription factor and support a physiological role for WiF-1 in the developmentally regulated expression of Wnt-1.


2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Quentin Le Hingrat ◽  
Benoit Visseaux ◽  
Mélanie Bertine ◽  
Lise Chauveau ◽  
Olivier Schwartz ◽  
...  

ABSTRACT The HIV-2 long terminal repeat (LTR) region contains several transcription factor (TF) binding sites. Efficient LTR transactivation by cellular TF and viral proteins is crucial for HIV-2 reactivation and viral production. Proviral LTRs from 66 antiretroviral-naive HIV-2-infected patients included in the French ANRS HIV-2 CO5 Cohort were sequenced. High genetic variability within the HIV-2 LTR was observed, notably in the U3 subregion, the subregion encompassing most known TF binding sites. Genetic variability was significantly higher in HIV-2 group B than in group A viruses. Notably, all group B viruses lacked the peri-ETS binding site, and 4 group B sequences (11%) also presented a complete deletion of the first Sp1 binding site. The lack of a peri-ETS binding site was responsible for lower transcriptional activity in activated T lymphocytes, while deletion of the first Sp1 binding site lowered basal or Tat-mediated transcriptional activities, depending on the cell line. Interestingly, the HIV-2 cellular reservoir was less frequently quantifiable in patients infected by group B viruses and, when quantifiable, the reservoirs were significantly smaller than in patients infected by group A viruses. Our findings suggest that mutations observed in vivo in HIV-2 LTR sequences are associated with differences in transcriptional activity and may explain the small cellular reservoirs in patients infected by HIV-2 group B, providing new insight into the reduced pathogenicity of HIV-2 infection. IMPORTANCE Over 1 million patients are infected with HIV-2, which is often described as an attenuated retroviral infection. Patients frequently have undetectable viremia and evolve at more slowly toward AIDS than HIV-1-infected patients. Several studies have reported a smaller viral reservoir in peripheral blood mononuclear cells in HIV-2-infected patients than in HIV-1-infected patients, while others have found similar sizes of reservoirs but a reduced amount of cell-associated RNA, suggesting a block in HIV-2 transcription. Recent studies have found associations between mutations within the HIV-1 LTR and reduced transcriptional activities. Until now, mutations within the HIV-2 LTR region have scarcely been studied. We conducted this research to discover if such mutations exist in the HIV-2 LTR and their potential association with the viral reservoir and transcriptional activity. Our study indicates that transcription of HIV-2 group B proviruses may be impaired, which might explain the small viral reservoir observed in patients.


2018 ◽  
Author(s):  
Zi-Wei Chen ◽  
John R. Bracamontes ◽  
Melissa M. Budelier ◽  
Allison L. Germann ◽  
Daniel J. Shin ◽  
...  

AbstractNeurosteroids are endogenous modulators of neuronal excitability and nervous system development and are being developed as anesthetic agents and treatments for psychiatric diseases. While GABAA receptors are the primary molecular targets of neurosteroid action, the structural details of neurosteroid binding to these proteins remain ill-defined. We synthesized neurosteroid analogue photolabeling reagents in which the photolabeling groups were placed at three positions around the neurosteroid ring structure, enabling identification of binding sites and mapping of neurosteroid orientation within these sites. Using middle-down mass spectrometry, we identified three clusters of photolabeled residues representing three distinct neurosteroid binding sites in the human α1β3GABAA receptor. Novel intrasubunit binding sites were identified within the transmembrane helical bundles of both the α1 and β3 subunits, adjacent to the extracellular domains. An intersubunit site in the interface between the β3(+) and α1(-) subunits of the GABAA receptor pentamer was also identified. Computational docking studies of neurosteroid to the three sites predicted critical residues contributing to neurosteroid interaction with the GABAA receptors. Electrophysiological studies based on these predictions indicate that both the α1 intrasubunit and β3-α1 intersubunit sites are critical for neurosteroid action.


Sign in / Sign up

Export Citation Format

Share Document