scholarly journals Pain induces stable, active microcircuits in the somatosensory cortex that provide a therapeutic target

2021 ◽  
Vol 7 (12) ◽  
pp. eabd8261
Author(s):  
Takuya Okada ◽  
Daisuke Kato ◽  
Yuki Nomura ◽  
Norihiko Obata ◽  
Xiangyu Quan ◽  
...  

Sustained neuropathic pain from injury or inflammation remains a major burden for society. Rodent pain models have informed some cellular mechanisms increasing neuronal excitability within the spinal cord and primary somatosensory cortex (S1), but how activity patterns within these circuits change during pain remains unclear. We have applied multiphoton in vivo imaging and holographic stimulation to examine single S1 neuron activity patterns and connectivity during sustained pain. Following pain induction, there is an increase in synchronized neuronal activity and connectivity within S1, indicating the formation of pain circuits. Artificially increasing neuronal activity and synchrony using DREADDs reduced pain thresholds. The expression of N-type voltage-dependent Ca2+ channel subunits in S1 was increased after pain induction, and locally blocking these channels reduced both the synchrony and allodynia associated with inflammatory pain. Targeting these S1 pain circuits, via inhibiting N-type Ca2+ channels or other approaches, may provide ways to reduce inflammatory pain.

2007 ◽  
Vol 7 (5) ◽  
pp. 136-137
Author(s):  
Yoav Noam ◽  
Tallie Z. Baram

Bidirectional Activity-Dependent Regulation of Neuronal Ion Channel Phosphorylation. Misonou H, Menegola M, Mohapatra DP, Guy LK, Park KS, Trimmer JS. J Neurosci 2006;26(52):13505–13514. Activity-dependent dephosphorylation of neuronal Kv2.1 channels yields hyperpolarizing shifts in their voltage-dependent activation and homoeostatic suppression of neuronal excitability. We recently identified 16 phosphorylation sites that modulate Kv2.1 function. Here, we show that in mammalian neurons, compared with other regulated sites, such as serine (S)563, phosphorylation at S603 is supersensitive to calcineurin-mediated dephosphorylation in response to kainate-induced seizures in vivo, and brief glutamate stimulation of cultured hippocampal neurons. In vitro calcineurin digestion shows that supersensitivity of S603 dephosphorylation is an inherent property of Kv2.1. Conversely, suppression of neuronal activity by anesthetic in vivo causes hyperphosphorylation at S603 but not S563. Distinct regulation of individual phosphorylation sites allows for graded and bidirectional homeostatic regulation of Kv2.1 function. S603 phosphorylation represents a sensitive bidirectional biosensor of neuronal activity.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Derya Sargin ◽  
David K Oliver ◽  
Evelyn K Lambe

The activity of serotonin (5-HT) neurons is critical for mood regulation. In a mouse model of chronic social isolation, a known risk factor for depressive illness, we show that 5-HT neurons in the dorsal raphe nucleus are less responsive to stimulation. Probing the responsible cellular mechanisms pinpoints a disturbance in the expression and function of small-conductance Ca2+-activated K+ (SK) channels and reveals an important role for both SK2 and SK3 channels in normal regulation of 5-HT neuronal excitability. Chronic social isolation renders 5-HT neurons insensitive to SK2 blockade, however inhibition of the upregulated SK3 channels restores normal excitability. In vivo, we demonstrate that inhibiting SK channels normalizes chronic social isolation-induced anxiety/depressive-like behaviors. Our experiments reveal a causal link for the first time between SK channel dysregulation and 5-HT neuron activity in a lifelong stress paradigm, suggesting these channels as targets for the development of novel therapies for mood disorders.


1982 ◽  
Vol 48 (6) ◽  
pp. 1321-1335 ◽  
Author(s):  
M. J. Gutnick ◽  
B. W. Connors ◽  
D. A. Prince

1. The cellular mechanisms underlying interictal epileptogenesis have been examined in an in vitro slice preparation of guinea pig neocortex. Penicillin or bicuculline was applied to the tissue, and intracellular recordings were obtained from neurons and glia. 2. Following convulsant application, stimulation could elicit a short-latency excitatory postsynaptic potential (EPSP) and a large, longer latency depolarization shift (DS) in single neurons. DSs in neurons of the slice were very similar to those evoked in neurons of neocortex in vivo in that they displayed an all-or-none character, large shifts in latency during repetitive stimuli, long afterpotentials, and a prolonged refractory period. In contrast to epileptogenesis produced by penicillin in intact cortex, neither spontaneous DSs nor ictal episodes were observed in neocortical slices. 3. In simultaneous recordings from pairs of neurons within the same cortical column, DS generation and latency shifts were invariably synchronous. DS generation in neurons was also coincident with large, paroxysmal increases of extracellular [K+], as indicated by simultaneous recordings from glia. 4. When polarizing currents were applied to neurons injected with the local anesthetic QX-314, the DS amplitude varied monotonically and had an extrapolated reversal potential near 0 mV. In neurons injected with the K+-current blocker Cs+, large displacements of membrane potential were possible, and both the short-latency EPSP and the peak of the DS diminished completely at about 0 mV. At potentials positive to this, the short-latency EPSP was reversed, and the DS was replaced by a paroxysmal hyperpolarization whose rise time and peak latency were prolonged compared to the DS evoked at resting potential. The paroxysmal hyperpolarization probably represents the prolonged activation of the impaled neuron by EPSPs. 5. Voltage-dependent components, including slow spikes, appeared to contribute to generation of the DS at resting potential in Cs+-filled cells, and these components were blocked during large depolarizations. 6. The results suggest that DS generation in single neocortical neurons occurs during synchronous synaptic activation of a large group of cells. DS onset in a given neuron is determined by the timing of a variable-latency excitatory input that differs from the short-latency EPSP. The DS slow envelope appears to be generated by long-duration excitatory synaptic currents and may be modulated by intrinsic voltage-dependent membrane conductances. 7. We present a hypothesis for the initiation of the DS, based on the anatomical and physiological organization of the intrinsic neocortical circuits.


2007 ◽  
Vol 35 (5) ◽  
pp. 1064-1068 ◽  
Author(s):  
D.P. Mohapatra ◽  
K.-S. Park ◽  
J.S. Trimmer

Voltage-gated K+ channels are key regulators of neuronal excitability. The Kv2.1 voltage-gated K+ channel is the major delayed rectifier K+ channel expressed in most central neurons, where it exists as a highly phosphorylated protein. Kv2.1 plays a critical role in homoeostatic regulation of intrinsic neuronal excitability through its activity- and calcineurin-dependent dephosphorylation. Here, we review studies leading to the identification and functional characterization of in vivo Kv2.1 phosphorylation sites, a subset of which contribute to graded modulation of voltage-dependent gating. These findings show that distinct developmental-, cell- and state-specific regulation of phosphorylation at specific sites confers a diversity of functions on Kv2.1 that is critical to its role as a regulator of intrinsic neuronal excitability.


1998 ◽  
Vol 274 (3) ◽  
pp. R677-R685 ◽  
Author(s):  
James W. Butcher ◽  
Julian F. R. Paton

We investigated the role of potassium conductances in the nucleus of the solitary tract (NTS) in determining the efficacy of the baroreceptor and cardiopulmonary reflexes in anesthetized rats. The baroreceptor reflex was elicited with an intravenous injection of phenylephrine to evoke a reflex bradycardia, and the cardiopulmonary reflex was evoked with a right atrial injection of phenylbiguanide. Microinjection of two Ca-dependent potassium channel antagonists (apamin and charybdotoxin) into the NTS potentiated the baroreceptor reflex bradycardia. This may reflect the increased neuronal excitability observed previously in vitro with these blockers. In contrast, the Ca-dependent potassium channel antagonists attenuated the cardiopulmonary reflex, whereas voltage-dependent potassium channel antagonists (4-aminopyridine and dendrotoxin) attenuated both the baro- and cardiopulmonary reflexes when microinjected into the NTS. The possibility that the reflex attenuation observed indicates a predominant distribution of certain potassium channels on γ-aminobutyric acid interneurons is discussed.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Joon S. Kim ◽  
Su Young Han ◽  
Karl J. Iremonger

AbstractStress leaves a lasting impression on an organism and reshapes future responses. However, the influence of past experience and stress hormones on the activity of neural stress circuits remains unclear. Hypothalamic corticotropin-releasing hormone (CRH) neurons orchestrate behavioral and endocrine responses to stress and are themselves highly sensitive to corticosteroid (CORT) stress hormones. Here, using in vivo optical recordings, we find that CRH neurons are rapidly activated in response to stress. CRH neuron activity robustly habituates to repeated presentations of the same, but not novel stressors. CORT feedback has little effect on CRH neuron responses to acute stress, or on habituation to repeated stressors. Rather, CORT preferentially inhibits tonic CRH neuron activity in the absence of stress stimuli. These findings reveal how stress experience and stress hormones modulate distinct components of CRH neuronal activity to mediate stress-induced adaptations.


2011 ◽  
Vol 31 (9) ◽  
pp. 1823-1835 ◽  
Author(s):  
Ping Deng ◽  
Zhi-Ping Pang ◽  
Zhigang Lei ◽  
Sojin Shikano ◽  
Qiaojie Xiong ◽  
...  

Excitotoxicity is the major cause of many neurologic disorders including stroke. Potassium currents modulate neuronal excitability and therefore influence the pathological process. A-type potassium current ( IA) is one of the major voltage-dependent potassium currents, yet its roles in excitotoxic cell death are not well understood. We report that, following ischemic insults, the IA increases significantly in large aspiny (LA) neurons but not medium spiny (MS) neurons in the striatum, which correlates with the higher resistance of LA neurons to ischemia. Activation of protein kinase Cα increases IA in LA neurons after ischemia. Cultured neurons from transgenic mice lacking both Kv1.4 and Kv4.2 subunits exhibit an increased vulnerability to ischemic insults. Increase of IA by recombinant expression of Kv1.4 or Kv4.2 is sufficient in improving the survival of MS neurons against ischemic insults both in vitro and in vivo. These results, taken together, provide compelling evidence for a protective role of IA against ischemia.


2014 ◽  
Vol 112 (2) ◽  
pp. 233-248 ◽  
Author(s):  
Justin Elstrott ◽  
Kelly B. Clancy ◽  
Haani Jafri ◽  
Igor Akimenko ◽  
Daniel E. Feldman

Whisker deflection evokes sparse, low-probability spiking among L2/3 pyramidal cells in rodent somatosensory cortex (S1), with spiking distributed nonuniformly between more and less responsive cells. The cellular and local circuit factors that determine whisker responsiveness across neurons are unclear. To identify these factors, we used two-photon calcium imaging and loose-seal recording to identify more and less responsive L2/3 neurons in S1 slices in vitro, during feedforward recruitment of the L2/3 network by L4 stimulation. We observed a broad gradient of spike recruitment thresholds within local L2/3 populations, with low- and high-threshold cells intermixed. This recruitment gradient was significantly correlated across different L4 stimulation sites, and between L4-evoked and whisker-evoked responses in vivo, indicating that a substantial component of responsiveness is independent of tuning to specific feedforward inputs. Low- and high-threshold L2/3 pyramidal cells differed in L4-evoked excitatory synaptic conductance and intrinsic excitability, including spike threshold and the likelihood of doublet spike bursts. A gradient of intrinsic excitability was observed across neurons. Cells that spiked most readily to L4 stimulation received the most synaptic excitation but had the lowest intrinsic excitability. Low- and high-threshold cells did not differ in dendritic morphology, passive membrane properties, or L4-evoked inhibitory conductance. Thus multiple gradients of physiological properties exist across L2/3 pyramidal cells, with excitatory synaptic input strength best predicting overall spiking responsiveness during network recruitment.


2000 ◽  
Vol 84 (4) ◽  
pp. 1982-1987 ◽  
Author(s):  
E. J. Ramcharan ◽  
C. L. Cox ◽  
X. J. Zhan ◽  
S. M. Sherman ◽  
J. W. Gnadt

We show for the first time with in vitro recording that burst firing in thalamic relay cells of the monkey is evoked by activation of voltage-dependent, low threshold Ca2+ spikes (LTSs), as has been described in other mammals. Due to variations in LTS amplitude, the number of action potentials evoked by an LTS could vary between 1 and 8. These data confirm the presence of two modes of firing in the monkey for thalamic relay cells, tonic and burst, the latter related to the activation of LTSs. With these details of the cellular processes underlying burst firing, we could account for many of the firing patterns we recorded from the lateral geniculate nucleus of the thalamus in behaving monkeys. In particular, we found clear evidence of burst firing during alert wakefulness, which had been thought to occur only during sleep or certain pathological states. This makes it likely that the burst firing seen in awake humans has the same cellular basis of LTSs, and this supports previous suggestions that burst firing represents an important relay mode for visual processing.


2006 ◽  
Vol 96 (6) ◽  
pp. 3362-3377 ◽  
Author(s):  
Bruce A. Carlson ◽  
Masashi Kawasaki

Central sensory neurons often respond selectively to particular combinations of stimulus attributes, but we know little about the underlying cellular mechanisms. The weakly electric fish Gymnarchus discriminates the sign of the frequency difference (Df) between a neighbor's electric organ discharge (EOD) and its own EOD by comparing temporal patterns of amplitude modulation (AM) and phase modulation (PM). Sign-selective neurons in the midbrain respond preferentially to either positive frequency differences (Df >0 selective) or negative frequency differences (Df <0 selective). To study the mechanisms of combination sensitivity, we made whole cell intracellular recordings from sign-selective midbrain neurons in vivo and recorded postsynaptic potential (PSP) responses to AM, PM, Df >0, and Df <0. Responses to AM and PM consisted of alternating excitatory and inhibitory PSPs. These alternating responses were in phase for the preferred sign of Df and offset for the nonpreferred sign of Df. Therefore a certain degree of sign selectivity was predicted by a linear sum of the responses to AM and PM. Responses to the nonpreferred sign of Df, but not the preferred sign of Df, were substantially weaker than linear predictions, causing a significant increase in the actual degree of sign selectivity. By using various levels of current clamp and comparing our results to simple models of synaptic integration, we demonstrate that this decreased response to the nonpreferred sign of Df is caused by a reduction in voltage-dependent excitatory conductances. This finding reveals that nonlinear decoders, in the form of voltage-dependent conductances, can enhance the selectivity of single neurons for particular combinations of stimulus attributes.


Sign in / Sign up

Export Citation Format

Share Document