scholarly journals Nuclear genome-wide associations with mitochondrial heteroplasmy

2021 ◽  
Vol 7 (12) ◽  
pp. eabe7520
Author(s):  
Priyanka Nandakumar ◽  
Chao Tian ◽  
Jared O’Connell ◽  
David Hinds ◽  
Andrew D. Paterson ◽  
...  

The role of the nuclear genome in maintaining the stability of the mitochondrial genome (mtDNA) is incompletely known. mtDNA sequence variants can exist in a state of heteroplasmy, which denotes the coexistence of organellar genomes with different sequences. Heteroplasmic variants that impair mitochondrial capacity cause disease, and the state of heteroplasmy itself is deleterious. However, mitochondrial heteroplasmy may provide an intermediate state in the emergence of novel mitochondrial haplogroups. We used genome-wide genotyping data from 982,072 European ancestry individuals to evaluate variation in mitochondrial heteroplasmy and to identify the regions of the nuclear genome that affect it. Age, sex, and mitochondrial haplogroup were associated with the extent of heteroplasmy. GWAS identified 20 loci for heteroplasmy that exceeded genome-wide significance. This included a region overlapping mitochondrial transcription factor A (TFAM), which has multiple roles in mtDNA packaging, replication, and transcription. These results show that mitochondrial heteroplasmy has a heritable nuclear component.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zheng Fu ◽  
Joseph W. Dean ◽  
Lifeng Xiong ◽  
Michael W. Dougherty ◽  
Kristen N. Oliff ◽  
...  

AbstractRORγt+ lymphocytes, including interleukin 17 (IL-17)-producing gamma delta T (γδT17) cells, T helper 17 (Th17) cells, and group 3 innate lymphoid cells (ILC3s), are important immune regulators. Compared to Th17 cells and ILC3s, γδT17 cell metabolism and its role in tissue homeostasis remains poorly understood. Here, we report that the tissue milieu shapes splenic and intestinal γδT17 cell gene signatures. Conditional deletion of mitochondrial transcription factor A (Tfam) in RORγt+ lymphocytes significantly affects systemic γδT17 cell maintenance and reduces ILC3s without affecting Th17 cells in the gut. In vivo deletion of Tfam in RORγt+ lymphocytes, especially in γδT17 cells, results in small intestine tissue remodeling and increases small intestine length by enhancing the type 2 immune responses in mice. Moreover, these mice show dysregulation of the small intestine transcriptome and metabolism with less body weight but enhanced anti-helminth immunity. IL-22, a cytokine produced by RORγt+ lymphocytes inhibits IL-13-induced tuft cell differentiation in vitro, and suppresses the tuft cell-type 2 immune circuit and small intestine lengthening in vivo, highlighting its key role in gut tissue remodeling.


2021 ◽  
Vol 9 (2) ◽  
pp. 240
Author(s):  
Bruno Cavadas ◽  
Marina Leite ◽  
Nicole Pedro ◽  
Ana C. Magalhães ◽  
Joana Melo ◽  
...  

The continuous characterization of genome-wide diversity in population and case–cohort samples, allied to the development of new algorithms, are shedding light on host ancestry impact and selection events on various infectious diseases. Especially interesting are the long-standing associations between humans and certain bacteria, such as the case of Helicobacter pylori, which could have been strong drivers of adaptation leading to coevolution. Some evidence on admixed gastric cancer cohorts have been suggested as supporting Homo-Helicobacter coevolution, but reliable experimental data that control both the bacterium and the host ancestries are lacking. Here, we conducted the first in vitro coinfection assays with dual human- and bacterium-matched and -mismatched ancestries, in African and European backgrounds, to evaluate the genome wide gene expression host response to H. pylori. Our results showed that: (1) the host response to H. pylori infection was greatly shaped by the human ancestry, with variability on innate immune system and metabolism; (2) African human ancestry showed signs of coevolution with H. pylori while European ancestry appeared to be maladapted; and (3) mismatched ancestry did not seem to be an important differentiator of gene expression at the initial stages of infection as assayed here.


Mitochondrion ◽  
2010 ◽  
Vol 10 (2) ◽  
pp. 240
Author(s):  
Deborah L. Croteau ◽  
Anne-Cécile V. Bayne ◽  
Chandrika Canugovi ◽  
Scott Maynard ◽  
Nadja de Souza-Pinto ◽  
...  

2001 ◽  
Vol 90 (1) ◽  
pp. 389-396 ◽  
Author(s):  
Joe W. Gordon ◽  
Arne A. Rungi ◽  
Hidetoshi Inagaki ◽  
David A. Hood

Mitochondrial transcription factor A (Tfam) is a nuclear-encoded gene product that is imported into mitochondria and is required for the transcription of mitochondrial DNA (mtDNA). We hypothesized that conditions known to produce mitochondrial biogenesis in skeletal muscle would be preceded by an increase in Tfam expression. Therefore, rat muscle was stimulated (10 Hz, 3 h/day). Tfam mRNA levels were significantly elevated (by 55%) at 4 days and returned to control levels at 14 days. Tfam import into intermyofibrillar (IMF) mitochondria was increased by 52 and 61% ( P < 0.05) at 5 and 7 days, respectively. This corresponded to an increase in the level of import machinery components. Immunoblotting data indicated that IMF Tfam protein content was increased by 63% ( P < 0.05) at 7 days of stimulation. This was associated with a 49% ( P < 0.05) increase in complex formation at the mtDNA promoter and a 65% ( P< 0.05) increase in the levels of a mitochondrial transcript, cytochrome- c oxidase (COX) subunit III. Similarly, COX enzyme activity was elevated by 71% ( P < 0.05) after 7 days of contractile activity. These results indicate that early events in mitochondrial biogenesis include increases in Tfam mRNA, followed by accelerations in mitochondrial import and increased Tfam content, which correspond with increased binding to the mtDNA promoter region. This was accompanied by increased mitochondrial transcript levels and elevated COX activity. These data support the role of Tfam as a regulatory protein involved in contractile activity-induced mitochondrial biogenesis.


1993 ◽  
Vol 13 (3) ◽  
pp. 1951-1961
Author(s):  
M A Parisi ◽  
B Xu ◽  
D A Clayton

Human mitochondrial transcription factor A is a 25-kDa protein that binds immediately upstream of the two major mitochondrial promoters, thereby leading to correct and efficient initiation of transcription. Although the nature of yeast mitochondrial promoters is significantly different from that of human promoters, a potential functional homolog of the human transcriptional activator protein has been previously identified in yeast mitochondria. The importance of the yeast protein in yeast mitochondrial DNA function has been shown by inactivation of its nuclear gene (ABF2) in Saccharomyces cerevisiae cells resulting in loss of mitochondrial DNA. We report here that the nuclear gene for human mitochondrial transcription factor A can be stably expressed in yeast cells devoid of the yeast homolog protein. The human protein is imported efficiently into yeast mitochondria, is processed correctly, and rescues the loss-of-mitochondrial DNA phenotype in a yeast abf2 strain, thus functionally substituting for the yeast protein. Both human and yeast proteins affect yeast mitochondrial transcription initiation in vitro, suggesting that the two proteins may have a common role in this fundamental process.


Circulation ◽  
2015 ◽  
Vol 131 (suppl_1) ◽  
Author(s):  
Nora Franceschini ◽  
Adrienne Stilp ◽  
Christina L Wassel ◽  
Holly J Mattix-Kramer ◽  
Michael F Flessner ◽  
...  

Introduction: Genome wide association studies have identified genetic variants in the Cubillin gene ( CUBN ) that explain inter-individual variation in urine albumin-to-creatinine excretion (UACR) in populations. These studies have not included Hispanics/Latinos, the fast growing minority population in the U.S., who has also high prevalence of chronic kidney disease and its risk factors. Hypothesis: By leveraging on population admixture of Hispanics and using a genome wide association approach, we hypothesized that novel loci associated with UACR would be identified. Methods: We used data from 12,212 self-identified Hispanic individuals recruited in a community-based study, aged 18-74 years at screening (2008-2011), and randomly selected from households in four U.S. field centers (Chicago, IL; Miami, FL; Bronx, NY; San Diego, CA). Urine albumin (mg/dl) and creatinine (g/dl) were measured at the baseline exam. UACR was log-transformed for analysis. Individuals were excluded if reporting to have end-stage renal disease. Genotyping was performed using a custom Illumina Omni2.5M array. Imputation of variants was performed using 1000 Genome Project data from cosmopolitan HapMap samples. After quality control of imputed data, we performed mixed linear regression analyses that accounted for the sampling strategy and family relatedness, for variants with minor allele frequency (MAF) > 0.01 and imputation quality > 0.3. We used additive genetic models and adjusted for age, sex, and principal components which were estimated from the data. In a secondary analysis, we also examine the association of significant variants with kidney function using estimated glomerular filtration rate (eGFR) equations. Results: Among 12,212 participants, 41% were men, and mean age was 46 (SD =13). There was little evidence for genome wide inflation (lambda =1.024). We identified significant associations of single nucleotide polymorphisms (SNPs) with UACR at two loci: CUBN and HBB . The CUBN SNP (chr10:16966414, p=2.1x10-8) is an indel variant with MAF of 0.14, which was not in linkage disequilibrium with previously reported SNP rs1801239 (rsq=0.38, p=1.3x10-4) identified in individuals of European ancestry. The HBB SNP is a missense variant which results in an E [Glu] ⇒ A [Ala] substitution in the beta-globin chain of hemoglobin and a cause of the Mendelian disorder sickle cell anemia (rs334, T allele frequency =0.01, beta=0.44, SE=0.06, p=7.6x10-12). rs344 was not associated with eGFR in our data (p>0.05). Conclusion: This study identified a novel association of a sickle cell missense variant with UACR in Hispanics, and provided evidence for allelic heterogeneity at the CUBN locus. Our findings suggest a role for Mendelian gene variants in increased albuminuria in Hispanic populations with admixture.


2021 ◽  
Vol 14 (694) ◽  
pp. eabe0387
Author(s):  
Orna Ernst ◽  
Jing Sun ◽  
Bin Lin ◽  
Balaji Banoth ◽  
Michael G. Dorrington ◽  
...  

Noncanonical inflammasome activation by cytosolic lipopolysaccharide (LPS) is a critical component of the host response to Gram-negative bacteria. Cytosolic LPS recognition in macrophages is preceded by a Toll-like receptor (TLR) priming signal required to induce transcription of inflammasome components and facilitate the metabolic reprograming that fuels the inflammatory response. Using a genome-scale arrayed siRNA screen to find inflammasome regulators in mouse macrophages, we identified the mitochondrial enzyme nucleoside diphosphate kinase D (NDPK-D) as a regulator of both noncanonical and canonical inflammasomes. NDPK-D was required for both mitochondrial DNA synthesis and cardiolipin exposure on the mitochondrial surface in response to inflammasome priming signals mediated by TLRs, and macrophages deficient in NDPK-D had multiple defects in LPS-induced inflammasome activation. In addition, NDPK-D was required for the recruitment of TNF receptor–associated factor 6 (TRAF6) to mitochondria, which was critical for reactive oxygen species (ROS) production and the metabolic reprogramming that supported the TLR-induced gene program. NDPK-D knockout mice were protected from LPS-induced shock, consistent with decreased ROS production and attenuated glycolytic commitment during priming. Our findings suggest that, in response to microbial challenge, NDPK-D–dependent TRAF6 mitochondrial recruitment triggers an energetic fitness checkpoint required to engage and maintain the transcriptional program necessary for inflammasome activation.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Stacy C Brown ◽  
Cameron Both ◽  
Julian N Acosta ◽  
Natalia Szejko ◽  
Victor Torres ◽  
...  

Background: Several genetic susceptibility risk loci for ischemic stroke have been identified. However, the relative dearth of genetic data from populations of non-European ancestry has the potential to create disparities in access to genomics-based precision medicine strategies. Individuals of Native Hawaiian ancestry represent a particularly understudied group in stroke genomics research despite facing high rates of cerebrovascular disease. Hypothesis: Genetic variants associated with stroke differ between Native Hawaiians and previously studied groups of predominantly European ancestry. Methods: We conducted a genome-wide (GW) association study of stroke and myocardial infarction (MI) in an adult population of Native Hawaiian ancestry, using data from the Multiethnic Cohort study (MEC). Genetic information was ascertained via genome-wide array genotyping using the AB OpenArray and TaqMan platforms followed by imputation to 1000 Genomes reference panels. We pursued replication of variants that were GW significant (p<5x10 -8 ) or yielded suggestive associations (p<5x10 -7 ) in the prior stroke GW association study MEGASTROKE. Results: We identified 2,104 individuals (1,089 [51.8%] female) of Native Hawaiian ancestry, including 173 cases and 1,931 controls. We identified one novel susceptibility risk locus at a narrow intronic region located at chromosome q26.2 (top associated SNP 3:169096251, OR 2.48, 95%CI 1.81-3.41; p=1.93x10 -8 ), overlying the MECOM gene. We also identified 9 other suggestive risk loci at p<5x10 -7 . When replicating in MEGASTROKE, q26.2 did not have available counterpart variants to analyze, and 3 out of 9 suggestive signals were associated with ischemic stroke subtypes at p<0.05. Conclusions: We report the first GW association study of ischemic stroke and myocardial infarction in a Native Hawaiian population. We identified one susceptibility risk locus at q26.2, located in a narrow intronic region of MECOM, a gene that codes for a histone-lysine N-methyltransferase that has transcriptional regulation and oncoprotein functions. The lack of available replication data for this locus in the large MEGASTROKE collaboration emphasizes the importance of developing genomic resources across ancestral groups.


Sign in / Sign up

Export Citation Format

Share Document