A genome-wide screen uncovers multiple roles for mitochondrial nucleoside diphosphate kinase D in inflammasome activation

2021 ◽  
Vol 14 (694) ◽  
pp. eabe0387
Author(s):  
Orna Ernst ◽  
Jing Sun ◽  
Bin Lin ◽  
Balaji Banoth ◽  
Michael G. Dorrington ◽  
...  

Noncanonical inflammasome activation by cytosolic lipopolysaccharide (LPS) is a critical component of the host response to Gram-negative bacteria. Cytosolic LPS recognition in macrophages is preceded by a Toll-like receptor (TLR) priming signal required to induce transcription of inflammasome components and facilitate the metabolic reprograming that fuels the inflammatory response. Using a genome-scale arrayed siRNA screen to find inflammasome regulators in mouse macrophages, we identified the mitochondrial enzyme nucleoside diphosphate kinase D (NDPK-D) as a regulator of both noncanonical and canonical inflammasomes. NDPK-D was required for both mitochondrial DNA synthesis and cardiolipin exposure on the mitochondrial surface in response to inflammasome priming signals mediated by TLRs, and macrophages deficient in NDPK-D had multiple defects in LPS-induced inflammasome activation. In addition, NDPK-D was required for the recruitment of TNF receptor–associated factor 6 (TRAF6) to mitochondria, which was critical for reactive oxygen species (ROS) production and the metabolic reprogramming that supported the TLR-induced gene program. NDPK-D knockout mice were protected from LPS-induced shock, consistent with decreased ROS production and attenuated glycolytic commitment during priming. Our findings suggest that, in response to microbial challenge, NDPK-D–dependent TRAF6 mitochondrial recruitment triggers an energetic fitness checkpoint required to engage and maintain the transcriptional program necessary for inflammasome activation.

2019 ◽  
Author(s):  
Noushin Hadadi ◽  
Vikash Pandey ◽  
Anush Chiappino-Pepe ◽  
Marian Morales ◽  
Hector Gallart-Ayala ◽  
...  

ABSTRACTUnderstanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Corinna Jie Hui Goh ◽  
Jin Huei Wong ◽  
Chadi El Farran ◽  
Ban Xiong Tan ◽  
Cynthia R Coffill ◽  
...  

Abstract Vemurafenib is a BRAF kinase inhibitor (BRAFi) that is used to treat melanoma patients harboring the constitutively active BRAF-V600E mutation. However, after a few months of treatment patients often develop resistance to vemurafenib leading to disease progression. Sequence analysis of drug-resistant tumor cells and functional genomic screens has identified several genes that regulate vemurafenib resistance. Reactivation of mitogen-activated protein kinase (MAPK) pathway is a recurrent feature of cells that develop resistance to vemurafenib. We performed a genome-scale CRISPR-based knockout screen to identify modulators of vemurafenib resistance in melanoma cells with a highly improved CRISPR sgRNA library called Brunello. We identified 33 genes that regulate resistance to vemurafenib out of which 14 genes have not been reported before. Gene ontology enrichment analysis showed that the hit genes regulate histone modification, transcription and cell cycle. We discuss how inactivation of hit genes might confer resistance to vemurafenib and provide a framework for follow-up investigations.


2015 ◽  
Vol 291 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Jonathan L. Schmid-Burgk ◽  
Dhruv Chauhan ◽  
Tobias Schmidt ◽  
Thomas S. Ebert ◽  
Julia Reinhardt ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 273-273 ◽  
Author(s):  
Michal Sheffer ◽  
Yiguo Hu ◽  
Ophir Shalem ◽  
Neville Sanjana ◽  
Eugen Dhimolea ◽  
...  

Abstract Acquired or de novo resistance to established and investigational therapies represents a major clinical challenge for multiple myeloma (MM) and other neoplasias. Despite extensive efforts, clinically-validated molecular markers that predict for proteasome inhibitor (PSI) resistance in most MM patients remain elusive. This challenge is partly due to limited availability so far of molecular data on MM patients before the start of PSI treatment vs. immediately after resistance to it develops; this challenge may also reflect the heterogeneity of the complex molecular mechanisms regulating MM cell response to PSIs. We hypothesized that resistance to PSIs can be mediated by disruption of several functionally overlapping genes, and that the prevalence of any of these lesions may be too low to detect in datasets available thus far. To examine this latter hypothesis, we performed a genome-wide screen for genes whose loss confers to MM cells resistance against bortezomib, through the use of the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 system. Specifically RPMI-8226 MM cells were transduced with lentiviral construct for Cas9 nuclease, followed by lentiviral delivery of a genome-scale pooled library of 123,411 single-guide RNAs (sgRNAs), which selectively align to target sequences at the 5′ constitutive exons of 18,080 genes and direct the Cas9 nuclease to cause double-stranded cleavage and loss of function of the respective gene. From the pool of MM cells transduced with the sgRNA library and treated with bortezomib, treatment-resistant cells were processed for deep sequencing, to identify enriched sgRNAs and their corresponding genes. We identified that loss-of-function of 33 candidate genes is associated with bortezomib resistance. We observed a high level of consistency between independent sgRNAs targeting the same gene, as well as a high rate of hit confirmation across different biological replicates. Notably, this set of candidate bortezomib-resistance genes was distinct from the "hits" we identified through a parallel CRISPR screen on the same cell line for resistance to a different targeted therapy (namely the bromodomain inhibitor JQ1), supporting the ability of this approach to identify treatment-specific resistance genes. These candidate bortezomib-resistance genes have documented or presumed roles in the regulation of extrinsic and intrinsic apoptotic cascades, autophagy, Toll-like receptor and NF-kappaB signaling, aggresome function, heat shock protein expression, chromatin remodeling, nutrient sensing, and tumor suppressor gene networks. Importantly, information from several publically available molecular profiling datasets converge to support the putative clinical relevance of these genes. For instance, gene expression data from tumor cells of bortezomib-naive patients with advanced MM revealed several transcriptional signatures of these candidate genes (defined by low transcript levels for any of the genes in the signature) which correlated with shorter time to disease progression after treatment with bortezomib (p<0.01, log-rank test), but not dexamethasone (p>0.426). Congruent with these findings, the highly bortezomib-responsive clinical setting of newly-diagnosed MM is associated with low cumulative frequency of mutations of these bortezomib-resistance genes (e.g. cumulative mutation rate of 3.9%, 95% confidence interval [CI] 1.25-6.55%). Notably, in other malignancies that are typically PSI-resistant, a higher cumulative frequency of such lesions is observed (average of ~28%, range 0-76%, 95% CI 22.46-32.70%; 57 datasets from 20+ neoplasias examined). In summary, this first application of the CRISPR/Cas9-based technology in MM illustrates its power to interrogate gene function on a genome-wide scale. This approach identifies bortezomib-resistance genes that are associated with pathways linked with the regulation of proteasome inhibitor response. Results from molecularly-annotated clinical samples converge to support a possible role for these genes in bortezomib resistance. This experience supports the value of CRISPR/Cas9-based studies to dissect the molecular mechanisms of treatment resistance in MM and other hematologic neoplasias (* equal contribution of M.S. and Y.H.). Disclosures Shalem: Broad Institute: Patent application for CRISPR technology Patents & Royalties. Sanjana:Broad Institute: Patent application for CRISPR technology Patents & Royalties. Zhang:Broad Institute: Patent application for CRISPR technology Patents & Royalties. Mitsiades:Johnson & Johnson: Research Funding; Amgen: Research Funding; Celgene: Consultancy, Honoraria; Millennium Pharmaceuticals: Consultancy, Honoraria.


2021 ◽  
Author(s):  
Juexiao Zhou ◽  
Bin Zhang ◽  
Haoyang Li ◽  
Longxi Zhou ◽  
Zhongxiao Li ◽  
...  

The accurate annotation of TSSs and their usage is critical for the mechanistic understanding of gene regulation under different biological contexts. To fulfill this, specific high-throughput experimental technologies have been developed to capture TSSs in a genome-wide manner. Various computational tools have also been developed for in silico prediction of TSSs solely based on genomic sequences. Most of these tools have drastic false positive predictions when applied on the genome-scale. Here, we present DeeReCT-TSS, a deep-learning-based method that is capable of TSSs identification across the whole genome based on DNA sequences and conventional RNA-seq data. We show that by effectively incorporating these two sources of information, DeeReCT-TSS significantly outperforms other solely sequence-based methods on the precise annotation of TSSs used in different cell types. Furthermore, we develop a meta-learning-based extension for simultaneous transcription start site (TSS) annotation on 10 cell types, which enables the identification of cell-type-specific TSS. Finally, we demonstrate the high precision of DeeReCT-TSS on two independent datasets from the ENCODE project by correlating our predicted TSSs with experimentally defined TSS chromatin states.


2019 ◽  
Author(s):  
Philippe C Després ◽  
Alexandre K Dubé ◽  
Motoaki Seki ◽  
Nozomu Yachie ◽  
Christian R Landry

AbstractBase editors derived from CRISPR-Cas9 systems and DNA editing enzymes offer an unprecedented opportunity for the precise modification of genes, but have yet to be used at a genome-scale throughput. Here, we test the ability of an editor based on a cytidine deaminase, the Target-AID base editor, to systematically modify genes genome-wide using the set of yeast essential genes. We tested the effect of mutating around 17,000 individual sites in parallel across more than 1,500 genes in a single experiment. We identified over 1,100 sites at which mutations have a significant impact on fitness. Using previously determined and preferred Target-AID mutational outcomes, we predicted the protein variants caused by each of these gRNAs. We found that gRNAs with significant effects on fitness are enriched in variants predicted to be deleterious by independent methods based on site conservation and predicted protein destabilization. Finally, we identify key features to design effective gRNAs in the context of base editing. Our results show that base editing is a powerful tool to identify key amino acid residues at the scale of proteomes.


2020 ◽  
Author(s):  
Chuang Wan ◽  
Chen Gao ◽  
Qin Xie ◽  
Yin Wang ◽  
Xin Cheng ◽  
...  

Abstract BackgroundInfections due to Pseudomonas aeruginosa (PA) are becoming a serious threat to patients in intensive care units. A PA vaccine is a practical and economical solution to solve the problems caused by PA infection successfully. In recent years, several antigen candidates have been tested in animal and human clinical trials, but none of them has been approved to date. An alternative strategy for antigen screening and protective antigens is in urgent demand.MethodsIn this study, we generated a genome-wide library of PA protein fragments tagged with maltose-binding protein (MBP). Using sera from patients who recovered after PA infection, we identified novel protective antigens and investigate the mechanism of these antigens induced protections.Resultswe identified a novel protective antigen, FlgE, which is the structural component of the flagella hook. Vaccination with recombinant FlgE (reFlgE) induced a Th2-predominant immune response and reduced bacterial load and inflammation in PA-infected mice. Anti-reFlgE antibodies recognized native FlgE on the bacterial membrane in vitro and conferred protection in mice, which may be due to the mediation of opsonophagocytic killing and inhibition of bacterial motility. In addition, the combination of reFlgE with rePcrVNH, an engineered antigen we reported previously, provided elevated protection against PA infection.ConclusionOur data demonstrate that FlgE is a promising vaccine candidate for PA and provide a new strategy for the efficient screening of antigens of other pathogens.


2020 ◽  
Author(s):  
Tian Cai ◽  
Hansaim Lim ◽  
Kyra Alyssa Abbu ◽  
Yue Qiu ◽  
Ruth Nussinov ◽  
...  

AbstractMolecular interaction is the foundation of biological process. Elucidation of genome-wide binding partners of a biomolecule will address many questions in biomedicine. However, ligands of a vast number of proteins remain elusive. Existing methods mostly fail when the protein of interest is dissimilar from those with known functions or structures. We develop a new deep learning framework DISAE that incorporates biological knowledge into self-supervised learning techniques for predicting ligands of novel unannotated proteins on a genome-scale. In the rigorous benchmark studies, DISAE outperforms state-of-the-art methods by a significant margin. The interpretability analysis of DISAE suggests that it learns biologically meaningful information. We further use DISAE to assign ligands to human orphan G-Protein Coupled Receptors (GPCRs) and to cluster the human GPCRome by integrating their phylogenetic and ligand relationships. The promising results of DISAE open an avenue for exploring the chemical landscape of entire sequenced genomes.


2018 ◽  
Author(s):  
Cory Schwartz ◽  
Jan-Fang Cheng ◽  
Robert Evans ◽  
Christopher A. Schwartz ◽  
James M. Wagner ◽  
...  

AbstractGenome-wide mutational screens are central to understanding the genetic underpinnings of evolved and engineered phenotypes. The widespread adoption of CRISPR-Cas9 genome editing has enabled such screens in many organisms, but identifying functional sgRNAs still remains a challenge. To address this limitation, we developed a methodology to quantify the cutting efficiency of each sgRNA in a genome-scale library in the biotechnologically important yeast Yarrowia lipolytica. Screening in the presence and absence of native DNA repair enabled high-throughput quantification of sgRNA function leading to the identification of high efficiency sgRNAs that cover 94% of genes. Library validation enhanced the classification of essential genes by identifying inactive guides that create false negatives and mask the effects of successful disruptions. Quantification of guide effectiveness also creates a dataset from which functional determinants of CRISPR-Cas9 can be identified. Finally, application of the library identified mutations that led to high lipid accumulation and eliminated pseudohyphal morphology.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nicholas J. McGlincy ◽  
Zuriah A. Meacham ◽  
Kendra K. Reynaud ◽  
Ryan Muller ◽  
Rachel Baum ◽  
...  

Abstract Background CRISPR/Cas9-mediated transcriptional interference (CRISPRi) enables programmable gene knock-down, yielding loss-of-function phenotypes for nearly any gene. Effective, inducible CRISPRi has been demonstrated in budding yeast, and genome-scale guide libraries enable systematic, genome-wide genetic analysis. Results We present a comprehensive yeast CRISPRi library, based on empirical design rules, containing 10 distinct guides for most genes. Competitive growth after pooled transformation revealed strong fitness defects for most essential genes, verifying that the library provides comprehensive genome coverage. We used the relative growth defects caused by different guides targeting essential genes to further refine yeast CRISPRi design rules. In order to obtain more accurate and robust guide abundance measurements in pooled screens, we link guides with random nucleotide barcodes and carry out linear amplification by in vitro transcription. Conclusions Taken together, we demonstrate a broadly useful platform for comprehensive, high-precision CRISPRi screening in yeast.


Sign in / Sign up

Export Citation Format

Share Document