scholarly journals Transient rhyolite melt extraction to produce a shallow granitic pluton

2021 ◽  
Vol 7 (21) ◽  
pp. eabf0604
Author(s):  
Allen J. Schaen ◽  
Blair Schoene ◽  
Josef Dufek ◽  
Brad S. Singer ◽  
Michael P. Eddy ◽  
...  

Rhyolitic melt that fuels explosive eruptions often originates in the upper crust via extraction from crystal-rich sources, implying an evolutionary link between volcanism and residual plutonism. However, the time scales over which these systems evolve are mainly understood through erupted deposits, limiting confirmation of this connection. Exhumed plutons that preserve a record of high-silica melt segregation provide a critical subvolcanic perspective on rhyolite generation, permitting comparison between time scales of long-term assembly and transient melt extraction events. Here, U-Pb zircon petrochronology and 40Ar/39Ar thermochronology constrain silicic melt segregation and residual cumulate formation in a ~7 to 6 Ma, shallow (3 to 7 km depth) Andean pluton. Thermo-petrological simulations linked to a zircon saturation model map spatiotemporal melt flux distributions. Our findings suggest that ~50 km3 of rhyolitic melt was extracted in ~130 ka, transient pluton assembly that indicates the thermal viability of advanced magma differentiation in the upper crust.

2021 ◽  
Author(s):  
Stephen Sparks ◽  
Marit van Zalinge ◽  
Darren Mark ◽  
Marissa Tremblay ◽  
Brenhin Keller ◽  
...  

Abstract Generation of silicic magmas leads to emplacement of granite plutons, huge explosive volcanic eruptions and physical and chemical zoning of continental and arc crust1-7. While the time scales for silicic magma generation in the deep and middle crust are prolonged8 magma transfer into the upper crust followed by eruption is episodic and can be rapid9-12. Ages of inherited zircons and sanidines from four Miocene ignimbrites in the Central Andes indicate a gap of 4.6 Myr between the start of pluton emplacement and onset of super-eruptions, with a 1 Myr cyclicity. Here we show that inherited sanidine crystals were stored at temperatures <470oC prior to incorporation in the magma. Our observations are explained by silicic melt segregation in a middle crustal hot zone with episodic melt ascent from an unstable layer at the top of the zone with a time scale governed by the rheology of the upper crust. After thermal incubation of the growing batholith, large magma chambers formed in only a few thousand years or less by dyke transport from the hot zone melt layer. Instability and disruption of earlier plutonic rock occurred in a few decades or less just prior to or during super-eruptions.


1984 ◽  
Vol 16 (3-4) ◽  
pp. 623-633
Author(s):  
M Loxham ◽  
F Weststrate

It is generally agreed that both the landfill option, or the civil techniques option for the final disposal of contaminated harbour sludge involves the isolation of the sludge from the environment. For short time scales, engineered barriers such as a bentonite screen, plastic sheets, pumping strategies etc. can be used. However for long time scales the effectiveness of such measures cannot be counted upon. It is thus necessary to be able to predict the long term environmenttal spread of contaminants from a mature landfill. A model is presented that considers diffusion and adsorption in the landfill site and convection and adsorption in the underlaying aquifer. From a parameter analysis starting form practical values it is shown that the adsorption behaviour and the molecular diffusion coefficient of the sludge, are the key parameters involved in the near field. The dilution effects of the far field migration patterns are also illustrated.


2021 ◽  
Vol 118 (4) ◽  
pp. e2021844118
Author(s):  
Pierre Lefebvre ◽  
Alkiviadis Gourgiotis ◽  
Arnaud Mangeret ◽  
Pierre Sabatier ◽  
Pierre Le Pape ◽  
...  

The long-term fate of uranium-contaminated sediments, especially downstream former mining areas, is a widespread environmental challenge. Essential for their management is the proper understanding of uranium (U) immobilization mechanisms in reducing environments. In particular, the long-term behavior of noncrystalline U(IV) species and their possible evolution to more stable phases in subsurface conditions is poorly documented, which limits our ability to predict U long-term geochemical reactivity. Here, we report direct evidence for the evolution of U speciation over 3,300 y in naturally highly U-enriched sediments (350–760 µg ⋅ g−1 U) from Lake Nègre (Mercantour Massif, Mediterranean Alps, France) by combining U isotopic data (δ238U and (234U/238U)) with U L3-edge X-ray absorption fine structure spectroscopy. Constant isotopic ratios over the entire sediment core indicate stable U sources and accumulation modes, allowing for determination of the impact of aging on U speciation. We demonstrate that, after sediment deposition, mononuclear U(IV) species associated with organic matter transformed into authigenic polymeric U(IV)–silica species that might have partially converted to a nanocrystalline coffinite (UIVSiO4·nH2O)-like phase. This diagenetic transformation occurred in less than 700 y and is consistent with the high silica availability of sediments in which diatoms are abundant. It also yields consistency with laboratory studies that proposed the formation of colloidal polynuclear U(IV)–silica species, as precursors for coffinite formation. However, the incomplete transformation observed here only slightly reduces the potential lability of U, which could have important implications to evaluate the long-term management of U-contaminated sediments and, by extension, of U-bearing wastes in silica-rich subsurface environments.


2006 ◽  
Vol 2 (4) ◽  
pp. 573-576 ◽  
Author(s):  
Jane M Reid ◽  
Peter Arcese ◽  
Lukas F Keller ◽  
Dennis Hasselquist

Knowledge of the causes of variation in host immunity to parasitic infection and the time-scales over which variation persists, is integral to predicting the evolutionary and epidemiological consequences of host–parasite interactions. It is clear that offspring immunity can be influenced by parental immune experience, for example, reflecting transfer of antibodies from mothers to young offspring. However, it is less clear whether such parental effects persist or have functional consequences over longer time-scales, linking a parent's previous immune experience to future immune responsiveness in fully grown offspring. We used free-living song sparrows ( Melospiza melodia ) to quantify long-term effects of parental immune experience on offspring immune response. We experimentally vaccinated parents with a novel antigen and tested whether parental vaccination influenced the humoral antibody response mounted by fully grown offspring hatched the following year. Parental vaccination did not influence offspring baseline antibody titres. However, offspring of vaccinated mothers mounted substantially stronger antibody responses than offspring of unvaccinated mothers. Antibody responses did not differ between offspring of vaccinated and unvaccinated fathers. These data demonstrate substantial long-term effects of maternal immune experience on the humoral immune response of fully grown offspring in free-living birds.


1996 ◽  
Vol 465 ◽  
Author(s):  
J. P. Freidberg ◽  
A. J. Shajii ◽  
K. W. Wenzel ◽  
J. R. Lierzer

ABSTRACTThis paper describes a new concept for a high-temperature, electrodeless melter for vitrifying radioactive wastes. Based on the principles of induction heating, it circumvents a number of difficulties associated with existing technology. The melter can operate at higher temperatures (1500–2000°C vs 1150°C), allowing for a higher quality, more durable glass which reduces the long-term leaching rate. Higher processing temperatures also enable conversion from borosilicate to high-silica glass which can accommodate 2 to 3 times as much radioactive waste, potentially halving the ultimate required long-term disposal space. Finally, with high temperatures, conversion of nuclear waste into ceramics can also be considered. This too leads to higher waste loading and the reduction of repository space. The melter is toroidal, linked by an iron core transformer that allows efficient electrical operation even at 60 Hz. One-dimensional electrical and thermal analyses are presented.


2020 ◽  
Vol 497 (1) ◽  
pp. 1115-1126
Author(s):  
M Pereyra ◽  
D Altamirano ◽  
J M C Court ◽  
N Degenaar ◽  
R Wijnands ◽  
...  

ABSTRACT IGR J17091–3624 is a low-mass X-ray binary (LMXB), which received wide attention from the community thanks to its similarities with the bright black hole system GRS 1915+105. Both systems exhibit a wide range of highly structured X-ray variability during outburst, with time-scales from few seconds to tens of minutes, which make them unique in the study of mass accretion in LMXBs. In this work, we present a general overview into the long-term evolution of IGR J17091–3624, using Swift/XRT observations from the onset of the 2011–2013 outburst in 2011 February till the end of the last bright outburst in 2016 November. We found four re-flares during the decay of the 2011 outburst, but no similar re-flares appear to be present in the latter one. We studied, in detail, the period with the lowest flux observed in the last 10 yr, just at the tail end of the 2011–2013 outburst, using Chandra and XMM-Newton observations. We observed changes in flux as high as a factor of 10 during this period of relative quiescence, without strong evidence of softening in the spectra. This result suggests that the source has not been observed at its true quiescence so far. By comparing the spectral properties at low luminosities of IGR J17091–3624 and those observed for a well-studied population of LMXBs, we concluded that IGR J17091–3624 is most likely to host a black hole as a compact companion rather than a neutron star.


1987 ◽  
Vol 92 ◽  
pp. 99-100
Author(s):  
M. Bossi ◽  
G. Guerrero ◽  
M. Scardia

ζTau is a Be star which probably showed already in 1973 rapid variations in Hα emission strength with time scales of a few minutes (Bahng, 1976). It represents, moreover, the primary of a well-known binary system with a period of 132.91 days (e.g., Hynek and Struve, 1942), and its shell displays long term instabilities with time scales of some years (Delplace and Chambon, 1976). The basis of the present work is a compact set of 82 grating photographic spectrograms obtained at Merate by means of the 137 cm reflector with an inverse dispersion of about 35 Å/mm between Jan 17 and Jan 24, 1983. Forty four of these spectra cover the range between ˜ 4000 and ˜ 5000 Å, the other ones being centered on Hα.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3427 ◽  
Author(s):  
Geovanny Marulanda ◽  
Antonio Bello ◽  
Jenny Cifuentes ◽  
Javier Reneses

Wind power has been increasing its participation in electricity markets in many countries around the world. Due to its economical and environmental benefits, wind power generation is one of the most powerful technologies to deal with global warming and climate change. However, as wind power grows, uncertainty in power supply increases due to wind intermittence. In this context, accurate wind power scenarios are needed to guide decision-making in power systems. In this paper, a novel methodology to generate realistic wind power scenarios for the long term is proposed. Unlike most of the literature that tackles this problem, this paper is focused on the generation of realistic wind power production scenarios in the long term. Moreover, spatial-temporal dependencies in multi-area markets have been considered. The results show that capturing the dependencies at the monthly level could improve the quality of scenarios at different time scales. In addition, an evaluation at different time scales is needed to select the best approach in terms of the distribution functions of the generated scenarios. To evaluate the proposed methodology, several tests have been made using real data of wind power generation for Spain, Portugal and France.


2020 ◽  
Vol 494 (2) ◽  
pp. 2280-2288
Author(s):  
J P Marshall ◽  
J Horner ◽  
R A Wittenmyer ◽  
J T Clark ◽  
M W Mengel

ABSTRACT The orbital solutions of published multiplanet systems are not necessarily dynamically stable on time-scales comparable to the lifetime of the system as a whole. For this reason, dynamical tests of the architectures of proposed exoplanetary systems are a critical tool to probe the stability and feasibility of the candidate planetary systems, with the potential to point the way towards refined orbital parameters of those planets. Such studies can even help in the identification of additional companions in such systems. Here, we examine the dynamical stability of three planetary systems, orbiting HD 67087, HD 110014, and HD 133131A. We use the published radial velocity measurements of the target stars to determine the best-fitting orbital solutions for these planetary systems using the systemic console. We then employ the N-body integrator mercury to test the stability of a range of orbital solutions lying within 3σ of the nominal best fit for a duration of 100 Myr. From the results of the N-body integrations, we infer the best-fitting orbital parameters using the Bayesian package astroemperor. We find that both HD 110014 and HD 133131A have long-term stable architectures that lie within the 1σ uncertainties of the nominal best fit to their previously determined orbital solutions. However, the HD 67087 system exhibits a strong tendency towards instability on short time-scales. We compare these results to the predictions made from consideration of the angular momentum deficit criterion, and find that its predictions are consistent with our findings.


Sign in / Sign up

Export Citation Format

Share Document