scholarly journals Stability analysis of three exoplanet systems

2020 ◽  
Vol 494 (2) ◽  
pp. 2280-2288
Author(s):  
J P Marshall ◽  
J Horner ◽  
R A Wittenmyer ◽  
J T Clark ◽  
M W Mengel

ABSTRACT The orbital solutions of published multiplanet systems are not necessarily dynamically stable on time-scales comparable to the lifetime of the system as a whole. For this reason, dynamical tests of the architectures of proposed exoplanetary systems are a critical tool to probe the stability and feasibility of the candidate planetary systems, with the potential to point the way towards refined orbital parameters of those planets. Such studies can even help in the identification of additional companions in such systems. Here, we examine the dynamical stability of three planetary systems, orbiting HD 67087, HD 110014, and HD 133131A. We use the published radial velocity measurements of the target stars to determine the best-fitting orbital solutions for these planetary systems using the systemic console. We then employ the N-body integrator mercury to test the stability of a range of orbital solutions lying within 3σ of the nominal best fit for a duration of 100 Myr. From the results of the N-body integrations, we infer the best-fitting orbital parameters using the Bayesian package astroemperor. We find that both HD 110014 and HD 133131A have long-term stable architectures that lie within the 1σ uncertainties of the nominal best fit to their previously determined orbital solutions. However, the HD 67087 system exhibits a strong tendency towards instability on short time-scales. We compare these results to the predictions made from consideration of the angular momentum deficit criterion, and find that its predictions are consistent with our findings.

2013 ◽  
Vol 9 (S304) ◽  
pp. 395-398 ◽  
Author(s):  
Željko Ivezić ◽  
Chelsea MacLeod

AbstractA damped random walk is a stochastic process, defined by an exponential covariance matrix that behaves as a random walk for short time scales and asymptotically achieves a finite variability amplitude at long time scales. Over the last few years, it has been demonstrated, mostly but not exclusively using SDSS data, that a damped random walk model provides a satisfactory statistical description of observed quasar variability in the optical wavelength range, for rest-frame timescales from 5 days to 2000 days. The best-fit characteristic timescale and asymptotic variability amplitude scale with the luminosity, black hole mass, and rest wavelength, and appear independent of redshift. In addition to providing insights into the physics of quasar variability, the best-fit model parameters can be used to efficiently separate quasars from stars in imaging surveys with adequate long-term multi-epoch data, such as expected from LSST.


1984 ◽  
Vol 16 (3-4) ◽  
pp. 623-633
Author(s):  
M Loxham ◽  
F Weststrate

It is generally agreed that both the landfill option, or the civil techniques option for the final disposal of contaminated harbour sludge involves the isolation of the sludge from the environment. For short time scales, engineered barriers such as a bentonite screen, plastic sheets, pumping strategies etc. can be used. However for long time scales the effectiveness of such measures cannot be counted upon. It is thus necessary to be able to predict the long term environmenttal spread of contaminants from a mature landfill. A model is presented that considers diffusion and adsorption in the landfill site and convection and adsorption in the underlaying aquifer. From a parameter analysis starting form practical values it is shown that the adsorption behaviour and the molecular diffusion coefficient of the sludge, are the key parameters involved in the near field. The dilution effects of the far field migration patterns are also illustrated.


2020 ◽  
Vol 497 (2) ◽  
pp. 1807-1825
Author(s):  
Katja Stock ◽  
Maxwell X Cai ◽  
Rainer Spurzem ◽  
M B N Kouwenhoven ◽  
Simon Portegies Zwart

ABSTRACT Despite the discovery of thousands of exoplanets in recent years, the number of known exoplanets in star clusters remains tiny. This may be a consequence of close stellar encounters perturbing the dynamical evolution of planetary systems in these clusters. Here, we present the results from direct N-body simulations of multiplanetary systems embedded in star clusters containing N = 8k, 16k, 32k, and 64k stars. The planetary systems, which consist of the four Solar system giant planets Jupiter, Saturn, Uranus, and Neptune, are initialized in different orbital configurations, to study the effect of the system architecture on the dynamical evolution of the entire planetary system, and on the escape rate of the individual planets. We find that the current orbital parameters of the Solar system giants (with initially circular orbits, as well as with present-day eccentricities) and a slightly more compact configuration, have a high resilience against stellar perturbations. A configuration with initial mean-motion resonances of 3:2, 3:2, and 5:4 between the planets, which is inspired by the Nice model, and for which the two outermost planets are usually ejected within the first 105 yr, is in many cases stabilized due to the removal of the resonances by external stellar perturbation and by the rapid ejection of at least one planet. Assigning all planets the same mass of 1 MJup almost equalizes the survival fractions. Our simulations reproduce the broad diversity amongst observed exoplanet systems. We find not only many very wide and/or eccentric orbits, but also a significant number of (stable) retrograde orbits.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 786 ◽  
Author(s):  
Oscar Gil-Castell ◽  
José David Badia ◽  
Jordi Bou ◽  
Amparo Ribes-Greus

The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 °C. The scaffolds for short-time applications were PLGA and PDO, in which the molar mass diminished down to 20% in a 20–30 days lifespan. While PDO developed crystallinity that prevented the geometry of the fibres, those of PLGA coalesced and collapsed. The scaffolds for long-term applications were PCL and PHB, in which the molar mass followed a progressive decrease, reaching values of 10% for PCL and almost 50% for PHB after 650 days of immersion. This resistant pattern was mainly ascribed to the stability of the crystalline domains of the fibres, in which the diameters remained almost unaffected. From the perspective of an adequate balance between the durability and degradation, this study may serve technologists as a reference point to design polyester-based scaffolds for biomedical applications.


2021 ◽  
Vol 648 ◽  
pp. L2 ◽  
Author(s):  
Václav Pavlík ◽  
Steven N. Shore

Aims. We aim to investigate the consequences of a fast massive stellar remnant – a black hole (BH) or a neutron star (NS) – encountering a planetary system. Methods. We modelled a close encounter between the actual Solar System (SS) and a 2 M⊙ NS and a 10 M⊙ BH, using a few-body symplectic integrator. We used a range of impact parameters, orbital phases at the start of the simulation derived from the current SS orbital parameters, encounter velocities, and incidence angles relative to the plane of the SS. Results. We give the distribution of possible outcomes, such as when the SS remains bound, when it suffers a partial or complete disruption, and in which cases the intruder is able to capture one or more planets, yielding planetary systems around a BH or a NS. We also show examples of the long-term stability of the captured planetary systems.


2020 ◽  
Vol 493 (1) ◽  
pp. 184-198 ◽  
Author(s):  
Jack J Evitts ◽  
Dirk Froebrich ◽  
Aleks Scholz ◽  
Jochen Eislöffel ◽  
Justyn Campbell-White ◽  
...  

ABSTRACT The HOYS citizen science project conducts long-term, multifilter, high-cadence monitoring of large YSO samples with a wide variety of professional and amateur telescopes. We present the analysis of the light curve of V1490 Cyg in the Pelican Nebula. We show that colour terms in the diverse photometric data can be calibrated out to achieve a median photometric accuracy of 0.02 mag in broad-band filters, allowing detailed investigations into a variety of variability amplitudes over time-scales from hours to several years. Using Gaia DR2, we estimate the distance to the Pelican Nebula to be 870 $^{+70}_{-55}$ pc. V1490 Cyg is a quasi-periodic dipper with a period of 31.447 ± 0.011 d. The obscuring dust has homogeneous properties, and grains larger than those typical in the ISM. Larger variability on short time-scales is observed in U and Rc−H α, with U amplitudes reaching 3 mag on time-scales of hours, indicating that the source is accreting. The H α equivalent width and NIR/MIR colours place V1490 Cyg between CTTS/WTTS and transition disc objects. The material responsible for the dipping is located in a warped inner disc, about 0.15 au from the star. This mass reservoir can be filled and emptied on time-scales shorter than the period at a rate of up to 10−10 M⊙ yr−1, consistent with low levels of accretion in other T Tauri stars. Most likely, the warp at this separation from the star is induced by a protoplanet in the inner accretion disc. However, we cannot fully rule out the possibility of an AA Tau-like warp, or occultations by the Hill sphere around a forming planet.


2011 ◽  
Vol 8 (4) ◽  
pp. 1023-1030 ◽  
Author(s):  
P. Y. Oikawa ◽  
L. Li ◽  
M. P. Timko ◽  
J. E. Mak ◽  
M. T. Lerdau

Abstract. Plants are an important source of atmospheric methanol (MeOH), the second most abundant organic gas after methane. Factors regulating phytogenic MeOH production are not well constrained in current MeOH emission models. Previous studies have indicated that light may have a direct influence on MeOH production. As light is known to regulate cell wall expansion, it was predicted that light would stimulate MeOH production through the pectin methylesterase (PME) pathway. MeOH emissions normalized for stomatal conductance (gs) did not, however, increase with light over short time scales (20–30 min). After experimentally controlling for gs and temperature, no light activation of PME activity or MeOH emission was observed. The results clearly demonstrate that light does not directly influence short-term changes in MeOH production and emission. Our data suggest that substrate limitation may be important in regulating MeOH production over short time scales. Future investigation of the long-term impacts of light on MeOH production may increase understanding of MeOH emission dynamics at the seasonal time scale.


2019 ◽  
Vol 628 ◽  
pp. A32 ◽  
Author(s):  
Antoine C. Petit ◽  
Jacques Laskar ◽  
Gwenaël Boué ◽  
Mickaël Gastineau

We present a new mixed variable symplectic (MVS) integrator for planetary systems that fully resolves close encounters. The method is based on a time regularisation that allows keeping the stability properties of the symplectic integrators while also reducing the effective step size when two planets encounter. We used a high-order MVS scheme so that it was possible to integrate with large time-steps far away from close encounters. We show that this algorithm is able to resolve almost exact collisions (i.e. with a mutual separation of a fraction of the physical radius) while using the same time-step as in a weakly perturbed problem such as the solar system. We demonstrate the long-term behaviour in systems of six super-Earths that experience strong scattering for 50 kyr. We compare our algorithm to hybrid methods such as MERCURY and show that for an equivalent cost, we obtain better energy conservation.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 245
Author(s):  
Frédéric Jaron

The high-mass X-ray binary LS I +61°303 is detected across the electromagnetic spectrum from radio until the very high energy γ-ray regime. The emission is not only highly variable on many time scales, but is also periodic at all observed wavelengths. Periodic modulation was observed on different time-scales, ranging from hours, over months to several years. The subject of this article is a super-orbital, long-term modulation of ∼4.6 years. We review the observation of this periodic modulation at multiple wavelengths and investigate systematic relationships between them. IN particular, radio observations reveal that the long-term modulation is a very stable feature of the source. Observations at other wavelengths result in a phase-shift of the modulationpattern that is a systematic function of energy. The stability of this period favors a scenario in which the long-term modulation is the result of a precessing jet giving rise to periodic changes in the Doppler factor, beating with the orbital modulation of the accretion rate. We explain the phase-shifts across energy bands in a scenario with shorter wavelengths originating closer to the base of the presessing jet. A significant deviation of the TeV emission from this trend possibly requires a different explanation related to magnetic reconnection events.


Author(s):  
M. Zh. Minglibayev ◽  
◽  
A.B. Kosherbayeva ◽  

The study of the dynamically evolution of planetary systems is very actually in relation with findings of exoplanet systems. free spherical bodies problem is considered in this paper, mutually gravitating according to Newton's law, with isotropically variable masses as a celestial-mechanical model of non-stationary exoplanetary systems. The dynamic evolution of planetary systems is learned, when evolution's leading factor is the masses' variability of gravitating bodies themselves. The laws of the bodies' masses varying are assumed to be known arbitrary functions of time. When doing so the rate of varying of bodies' masses is different. The planets' location is such that the orbits of planets don't intersect. Let us treat this position of planets is preserve in the evolution course. The motions are researched in the relative coordinates system with beginning in the center of the parent star, axes that are parallel to corresponding axes of the absolute coordinates system. The canonical perturbation theory is used on the base aperiodic motion over the quasi-canonical cross-section. The bodies evolution is studied in the osculating analogues of the second system of canonical Poincare elements. The canonical equations of perturbed motion in analogues of the second system of canonical Poincare elements are convenient for describing the planetary systems dynamic evolution, when analogues of eccentricities and analogues of inclinations of orbital plane are sufficiently small. It is noted that to obtain an analytical expression of the perturbing function main part through canonical osculating Poincare elements using computer algebra is preferably. If in expansions of the main part of perturbing function is constrained with precision to second orders including relatively small quantities, then the equations of secular perturbations will obtained as linear non-autonomous system. This circumstance meaningful makes much easier to study the non-autonomous canonical system of differential equations of secular perturbations of considering problem.


Sign in / Sign up

Export Citation Format

Share Document