scholarly journals Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing

2021 ◽  
Vol 7 (22) ◽  
pp. eabg4041
Author(s):  
Lijing Zheng ◽  
Miaomiao Zhu ◽  
Baohu Wu ◽  
Zhaoling Li ◽  
Shengtong Sun ◽  
...  

Highly conductive and stretchy fibers are crucial components for smart fabrics and wearable electronics. However, most of the existing fiber conductors are strain sensitive with deteriorated conductance upon stretching, and thus, a compromised strategy via introducing merely geometric distortion of conductive path is often used for stable conductance. Here, we report a coaxial wet-spinning process for continuously fabricating intrinsically stretchable, highly conductive yet conductance-stable, liquid metal sheath-core microfibers. The microfiber can be stretched up to 1170%, and upon fully activating the conductive path, a very high conductivity of 4.35 × 104 S/m and resistance change of only 4% at 200% strain are realized, arising from both stretch-induced channel opening and stretching out of tortuous serpentine conductive path of the percolating liquid metal network. Moreover, the microfibers can be easily woven into an everyday glove or fabric, acting as excellent joule heaters, electrothermochromic displays, and self-powered wearable sensors to monitor human activities.

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-25 ◽  
Author(s):  
Zhe Li ◽  
Qiang Zheng ◽  
Zhong Lin Wang ◽  
Zhou Li

Wearable and implantable electronics (WIEs) are more and more important and attractive to the public, and they have had positive influences on all aspects of our lives. As a bridge between wearable electronics and their surrounding environment and users, sensors are core components of WIEs and determine the implementation of their many functions. Although the existing sensor technology has evolved to a very advanced level with the rapid progress of advanced materials and nanotechnology, most of them still need external power supply, like batteries, which could cause problems that are difficult to track, recycle, and miniaturize, as well as possible environmental pollution and health hazards. In the past decades, based upon piezoelectric, pyroelectric, and triboelectric effect, various kinds of nanogenerators (NGs) were proposed which are capable of responding to a variety of mechanical movements, such as breeze, body drive, muscle stretch, sound/ultrasound, noise, mechanical vibration, and blood flow, and they had been widely used as self-powered sensors and micro-nanoenergy and blue energy harvesters. This review focuses on the applications of self-powered generators as implantable and wearable sensors in health monitoring, biosensor, human-computer interaction, and other fields. The existing problems and future prospects are also discussed.


2021 ◽  
Vol 11 (2) ◽  
pp. 531
Author(s):  
Jungjoon Lee ◽  
Sungha Jeon ◽  
Hyeonyeob Seo ◽  
Jung Tae Lee ◽  
Seongjun Park

Wearable electronics have been receiving increasing attention for the past few decades. Particularly, fiber-based electronics are considered to be ideal for many applications for their flexibility, lightweight, breathability, and comfortability. Furthermore, fibers and fiber-based textiles can be 3D-molded with ease and potentially integrated with everyday clothes or accessories. These properties are especially desired in the fields of bio-related sensors and energy-storage systems. Wearable sensors utilize a tight interface with human skin and clothes for continuous environmental scanning and non-invasive health monitoring. At the same time, their flexible and lightweight properties allow more convenient and user-friendly experiences to the wearers. Similarly, for the wearable devices to be more accessible, it is crucial to incorporate energy harvesting and storage systems into the device themselves, removing the need to attach an external power source. This review summarizes the recent applications of fibers and fiber-based textiles in mechanical, photonic, and biomedical sensors. Pressure and strain sensors and their implementation as electronic skins will be explored, along with other various fiber sensors capable of imaging objects or monitoring safety and health markers. In addition, we attempt to elucidate recent studies in energy-storing fibers and their implication in self-powered and fully wireless wearable devices.


iScience ◽  
2021 ◽  
pp. 102698
Author(s):  
Phillip Won ◽  
Seongmin Jeong ◽  
Carmel Majidi ◽  
Seung Hwan Ko

2021 ◽  
Vol 7 (3) ◽  
pp. eabd6978 ◽  
Author(s):  
Jingxin Zhao ◽  
Hongyu Lu ◽  
Yan Zhang ◽  
Shixiong Yu ◽  
Oleksandr I. Malyi ◽  
...  

Coaxial fiber-shaped supercapacitors with short charge carrier diffusion paths are highly desirable as high-performance energy storage devices for wearable electronics. However, the traditional approaches based on the multistep fabrication processes for constructing the fiber-shaped energy device still encounter persistent restrictions in fabrication procedure, scalability, and mechanical durability. To overcome this critical challenge, an all-in-one coaxial fiber-shaped asymmetric supercapacitor (FASC) device is realized by a direct coherent multi-ink writing three-dimensional printing technology via designing the internal structure of the coaxial needles and regulating the rheological property and the feed rates of the multi-ink. Benefitting from the compact coaxial structure, the FASC device delivers a superior areal energy/power density at a high mass loading, and outstanding mechanical stability. As a conceptual exhibition for system integration, the FASC device is integrated with mechanical units and pressure sensor to realize high-performance self-powered mechanical devices and monitoring systems, respectively.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 337
Author(s):  
Navneet Soin ◽  
Sam J. Fishlock ◽  
Colin Kelsey ◽  
Suzanne Smith

The use of rapid point-of-care (PoC) diagnostics in conjunction with physiological signal monitoring has seen tremendous progress in their availability and uptake, particularly in low- and middle-income countries (LMICs). However, to truly overcome infrastructural and resource constraints, there is an urgent need for self-powered devices which can enable on-demand and/or continuous monitoring of patients. The past decade has seen the rapid rise of triboelectric nanogenerators (TENGs) as the choice for high-efficiency energy harvesting for developing self-powered systems as well as for use as sensors. This review provides an overview of the current state of the art of such wearable sensors and end-to-end solutions for physiological and biomarker monitoring. We further discuss the current constraints and bottlenecks of these devices and systems and provide an outlook on the development of TENG-enabled PoC/monitoring devices that could eventually meet criteria formulated specifically for use in LMICs.


2017 ◽  
Vol 47 (8) ◽  
pp. 1925-1943 ◽  
Author(s):  
Giorgio De Pasquale ◽  
Andrea Mura

The development of e-textiles and conductive fabrics is strongly supported by the rapid growth of wearable electronics. Unfortunately, the fast development of production technologies for smart textiles has not been followed by standard design methods and validation procedures to certificate the electro-mechanical reliability of e-textiles. Then, the design of test procedures able to control the sources of failure in combination with cross-talk effects (e.g. between load and wear, cyclic loads and current flow, etc.) is crucial. Standard tests already used for traditional fabrics are not satisfactory in predicting the lifetime of e-textiles. This paper introduces the design of innovative machine to assess the performances and reliability of smart fabrics under fully controllable conditions.


2016 ◽  
Vol 63 (10) ◽  
pp. 1557-1566 ◽  
Author(s):  
Dima Kilani ◽  
Mohammad Alhawari ◽  
Baker Mohammad ◽  
Hani Saleh ◽  
Mohammed Ismail

Sign in / Sign up

Export Citation Format

Share Document