Quantum Mechanics: Error-Correcting Code Keeps Quantum Computers on Track

Science ◽  
1996 ◽  
Vol 272 (5259) ◽  
pp. 199-0
Author(s):  
B. Cipra
2021 ◽  
Vol 26 ◽  
Author(s):  
T. Berry ◽  
J. Sharpe

Abstract This paper introduces and demonstrates the use of quantum computers for asset–liability management (ALM). A summary of historical and current practices in ALM used by actuaries is given showing how the challenges have previously been met. We give an insight into what ALM may be like in the immediate future demonstrating how quantum computers can be used for ALM. A quantum algorithm for optimising ALM calculations is presented and tested using a quantum computer. We conclude that the discovery of the strange world of quantum mechanics has the potential to create investment management efficiencies. This in turn may lead to lower capital requirements for shareholders and lower premiums and higher insured retirement incomes for policyholders.


2021 ◽  
Vol 7 (1) ◽  
pp. 1-9
Author(s):  
Zion Elani

Quantum computing, a fancy word resting on equally fancy fundamentals in quantum mechanics, has become a media hype, a mainstream topic in popular culture and an eye candy for high-tech company researchers and investors alike. Quantum computing has the power to provide faster, more efficient, secure and accurate computing solutions for emerging future innovations. Governments the world over, in collaboration with high-tech companies, pour in billions of dollars for the advancement of computing solutions quantum-based and for the development of fully functioning quantum computers that may one day aid in or even replace classical computers. Despite much hype and publicity, most people do not understand what quantum computing is, nor do they comprehend the significance of the developments required in this field, and the impact it may have on the future. Through these lecture notes, we embark on a pedagogic journey of understanding quantum computing, gradually revealing the concepts that form its basis, later diving in a vast pool of future possibilities that lie ahead, concluding with understanding and acknowledging some major hindrance and speed breaking bumpers in their path.


2021 ◽  
Author(s):  
Aishwarya Jhanwar ◽  
Manisha J. Nene

Recently, increased availability of the data has led to advances in the field of machine learning. Despite of the growth in the domain of machine learning, the proximity to the physical limits of chip fabrication in classical computing is motivating researchers to explore the properties of quantum computing. Since quantum computers leverages the properties of quantum mechanics, it carries the ability to surpass classical computers in machine learning tasks. The study in this paper contributes in enabling researchers to understand how quantum computers can bring a paradigm shift in the field of machine learning. This paper addresses the concepts of quantum computing which influences machine learning in a quantum world. It also states the speedup observed in different machine learning algorithms when executed on quantum computers. The paper towards the end advocates the use of quantum application software and throw light on the existing challenges faced by quantum computers in the current scenario.


2021 ◽  
pp. 032-047
Author(s):  
Yu LW ◽  
Wang NL ◽  
Kanemitsu S

Anticipating the realization of quantum computers, we propose the most reader-friendly exposition of quantum information and qubits theory. Although the latter lies within framework of linear algebra, it has some fl avor of quantum mechanics and it would be easier to get used to special symbols and terminologies. Quantum mechanics is described in the language of functional analysis: the state space (the totality of all states) of a quantum system is a Hilbert space over the complex numbers and all mechanical quantities are taken as Hermite operators. Hence some basics of functional analysis is necessary. We make a smooth transition from linear algebra to functional analysis by comparing the elements in these theories: Hilbert space vs. fi nite dimensional vector space, Hermite operator vs. linear map given by a Hermite matrix. Then from Newtonian mechanics to quantum mechanics and then to the theory of qubits. We elucidate qubits theory a bit by accommodating it into linear algebra framework under these precursors.


Author(s):  
Lance Fortnow

This chapter examines the power of quantum computing, as well as the related concepts of quantum cryptography and teleportation. In 1982, the Nobel prize-winning physicist Richard Feynman noticed there was no simple way of simulating quantum physical systems using digital computers. He turned this problem into an opportunity—perhaps a computational device based on quantum mechanics could solve problems more efficiently than more traditional computers. In the decades that followed, computer scientists and physicists, often working together, showed in theory that quantum computers can solve certain problems, such as factoring numbers, much faster. Whether one can actually build large or even medium-scale working quantum computers and determine exactly what these computers can or cannot do still remain significant challenges.


2001 ◽  
Vol 86 (25) ◽  
pp. 5811-5814 ◽  
Author(s):  
E. Knill ◽  
R. Laflamme ◽  
R. Martinez ◽  
C. Negrevergne

Author(s):  
Emanuele Bellini ◽  
Chiara Marcolla ◽  
Nadir Murru

The study of new error correcting codes has raised attention in the last years, especially because of their use in cryptosystems that are resistant to attacks running on quantum computers. In 2006, while leaving a more in-depth analysis for future research, Stakhov gave some interesting ideas on how to exploit Fibonacci numbers to derive an original error correcting code with a compact representation. In this paper, we provide an explicit formula to compute the redundancy of Stakhov codes, we identify some flows in the initial decoding procedure described by Stakhov, whose crucial point is to solve some non-trivial Diophantine equations, and provide a detailed discussion on how to avoid solving such equations in some cases and on how to detect and correct errors more efficiently.


2021 ◽  
Vol 20 (2) ◽  
pp. 18-24
Author(s):  
M.N. Borisevich ◽  
◽  
V.I. Kozlovsky ◽  

The foundations of quantum physics have been laid by Max Planck, who suggested that energy couldn’t be absorbed and radiated continuously, but only in separate portions - these portions were called quanta. His ideas were confirmed in numerous physical experiments on the photo effect, the structure of the atom and atomic nucleus, brilliantly performed by Bohr and Rutherford. All this in the aggregate made it possible to eliminate the border between matter and waves, predicted by Louis de Broil. In this way the foundations of quantum mechanics were laid = Heisenberg and Schrödinger did this work. Many manifestations of quantum physics can already be observed in everyday life. These are optical quantum generators, computer CDs, and integrated circuits and lots and lots of this. In recent years, the researchers have drawn their attention to other quantum physics applications related to queries. By their design, this work will be carried out in the future by quantum computers. The article presents a short report on the quantum computer and the prospects for its use in quantum medicine.


Muzikologija ◽  
2018 ◽  
pp. 21-37
Author(s):  
Alexis Kirke

There have been significant attempts previously to use the equations of quantum mechanics for generating sound, and to sonify simulated quantum processes. For new forms of computation to be utilized in computer music, eventually hardware must be utilized. This has rarely happened with quantum computer music. One reason for this is that it is currently not easy to get access to such hardware. A second is that the hardware available requires some understanding of quantum computing theory. This paper moves forward the process by utilizing two hardware quantum computation systems: IBMQASM v1.1 and a D-Wave 2X. It also introduces the ideas behind the gate-based IBM system, in a way hopefully more accessible to computerliterate readers. This is a presentation of the first hybrid quantum computer algorithm, involving two hardware machines. Although neither of these algorithms explicitly utilize the promised quantum speed-ups, they are a vital first step in introducing QC to the musical field. The article also introduces some key quantum computer algorithms and discusses their possible future contribution to computer music.


Sign in / Sign up

Export Citation Format

Share Document