scholarly journals Multifaceted interactions between adaptive immunity and the central nervous system

Science ◽  
2016 ◽  
Vol 353 (6301) ◽  
pp. 766-771 ◽  
Author(s):  
J. Kipnis
2019 ◽  
Vol 19 (1S) ◽  
pp. 68-70
Author(s):  
N A Didkovsky ◽  
I K Malashenkova ◽  
D P Ogurtsov ◽  
S A Krynskiy ◽  
N A Hailov ◽  
...  

The aim of the work is to study the level of systemic inflammation and changes in adaptive immunity in the early period after acute psychosis to assess their participation in the pathogenesis of alcoholic mental and cognitive disorders. We examined 28 patients with alcoholic psychosis (AP) and a control group of 17 healthy volunteers. Indicators of systemic inflammation and immunity, including key cytokines and lymphocyte subpopulations, were investigated. After acute psychosis of patients with alcoholism, pronounced activation of humoral immunity with impaired clearance of immune complexes, increased content and activity of Th2 with signs of insufficiency and dysfunction of Th1, reduced content and activity of cytotoxicity system cells and signs of systemic inflammation (increased CRP, cortisol, cytokines). Activation of Th2 response and an excess of proinflammatory mediators in patients with AP through various ways of interaction with the Central nervous system (n. vagus, choroidal plexus of the ventricles, and others) can participate in the disorders of metabolism of neurotransmitters in the Central nervous system involved in the pathogenesis of alcoholism, and in the maintenance of neuroinflammation. A high level of systemic inflammation can be both a trigger of psychosis and a manifestation of violations of neuroimmune interactions, as well as the development of excitotoxicity and damage to neurons in acute psychosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Steven K. Yarmoska ◽  
Ali M. Alawieh ◽  
Stephen Tomlinson ◽  
Kimberly B. Hoang

The complement system is a highly conserved component of innate immunity that is involved in recognizing and responding to pathogens. The system serves as a bridge between innate and adaptive immunity, and modulation of the complement system can affect the entire host immune response to a foreign insult. Neoplastic diseases have been shown to engage the complement system in order to evade the immune system, gain a selective growth advantage, and co-opt the surrounding environment for tumor proliferation. Historically, the central nervous system has been considered to be an immune-privileged environment, but it is now clear that there are active roles for both innate and adaptive immunity within the central nervous system. Much of the research on the role of immunological modulation of neoplastic disease within the central nervous system has focused on adaptive immunity, even though innate immunity still plays a critical role in the natural history of central nervous system neoplasms. Here, we review the modulation of the complement system by a variety of neoplastic diseases of the central nervous system. We also discuss gaps in the current body of knowledge and comment on future directions for investigation.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Sign in / Sign up

Export Citation Format

Share Document