scholarly journals THE LEVEL OF SYSTEMIC INFLAMMATION AND CHANGES IN ADAPTIVE IMMUNITY IN ALCOHOLIC PSYCHOSES

2019 ◽  
Vol 19 (1S) ◽  
pp. 68-70
Author(s):  
N A Didkovsky ◽  
I K Malashenkova ◽  
D P Ogurtsov ◽  
S A Krynskiy ◽  
N A Hailov ◽  
...  

The aim of the work is to study the level of systemic inflammation and changes in adaptive immunity in the early period after acute psychosis to assess their participation in the pathogenesis of alcoholic mental and cognitive disorders. We examined 28 patients with alcoholic psychosis (AP) and a control group of 17 healthy volunteers. Indicators of systemic inflammation and immunity, including key cytokines and lymphocyte subpopulations, were investigated. After acute psychosis of patients with alcoholism, pronounced activation of humoral immunity with impaired clearance of immune complexes, increased content and activity of Th2 with signs of insufficiency and dysfunction of Th1, reduced content and activity of cytotoxicity system cells and signs of systemic inflammation (increased CRP, cortisol, cytokines). Activation of Th2 response and an excess of proinflammatory mediators in patients with AP through various ways of interaction with the Central nervous system (n. vagus, choroidal plexus of the ventricles, and others) can participate in the disorders of metabolism of neurotransmitters in the Central nervous system involved in the pathogenesis of alcoholism, and in the maintenance of neuroinflammation. A high level of systemic inflammation can be both a trigger of psychosis and a manifestation of violations of neuroimmune interactions, as well as the development of excitotoxicity and damage to neurons in acute psychosis.

2018 ◽  
Vol 17 (2) ◽  
pp. 132-143 ◽  
Author(s):  
Mehmet Eray Alcigir ◽  
Halef Okan Dogan ◽  
Begum Yurdakok Dikmen ◽  
Kubra Dogan ◽  
Sevil Atalay Vural ◽  
...  

Background & Objective: Aroclor 1254 is a widespread toxic compound of Polychlorinated Biphenyls (PCBs), which can create significant nervous problems. No remedies have been found to date. The aim of this study was to reveal the damage that occurs in the central nervous system of rat pups exposed to Aroclor 1254 in the prenatal period and to show the inhibiting effect of curcumin, which is a strong anti-oxidant and neuroprotective substance. Method: The study established 3 groups of adult female and male Wistar albino rats. The rats were mated within these groups and the offspring rats were evaluated within the group given Aroclor 1254 only (n=10) and the group was given both Aroclor 1254 and curcumin (n=10) and the control group (n=10). The groups were compared in respect of pathomorphological damage. The immunohistochemical evaluation was made of 8-hydroxdeoxyguanosine (8-OHdG), 4-hydroxynoneal (4HNE), myelin basic protein (MBP) expressions and TUNEL reaction. The biochemical evaluation was made of the changes in the TAS-TOS and Neuron Specific Enolase (NSE) levels. Damage was seen to have been reduced with curcumin in the 8OHdG and TUNEL reactions, especially in the forebrain and the midbrain, although the dosage applied did not significantly change TAS and TOS levels. Consequently, it was understood that Aroclor 1254 caused damage in the central nervous system of the pup in the prenatal period, and curcumin reduced these negative effects, particularly in the forebrain and the midbrain. Conclusion: It was concluded that curcumin could be a potential neuroprotective agent and would be more effective at higher doses.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Qianli Tang ◽  
Qiuyan Jiang ◽  
Suren R. Sooranna ◽  
Shike Lin ◽  
Yuanyuan Feng ◽  
...  

To observe the effects of electroacupuncture on pain threshold of laboring rats and the expression of norepinephrine transporter andα2 adrenergic receptor in the central nervous system to determine the mechanism of the analgesic effect of labor. 120 pregnant rats were divided into 6 groups: a control group, 4 electroacupuncture groups, and a meperidine group. After interventions, the warm water tail-flick test was used to observe pain threshold. NE levels in serum, NET, andα2AR mRNA and protein expression levels in the central nervous system were measured. No difference in pain threshold was observed between the 6 groups before intervention. After intervention, increased pain thresholds were observed in all groups except the control group with a higher threshold seen in the electroacupuncture groups. Serum NE levels decreased in the electroacupuncture and MP groups. Increases in NET andα2AR expression in the cerebral cortex and decreases in enlarged segments of the spinal cord were seen. Acupuncture increases uptake of NE via cerebral NET and decreases its uptake by spinal NET. The levels ofα2AR are also increased and decreased, respectively, in both tissues. This results in a decrease in systemic NE levels and may be the mechanism for its analgesic effects.


2021 ◽  
Vol 11 (11) ◽  
pp. 249-265
Author(s):  
B. Lobasyuk ◽  
L. Bartsevich ◽  
A. Zamkovaya

Justification. Mental retardation is a persistent decrease in human cognitive activity against the background of organic damage to the central nervous system. Neurophysiological diagnostics, in particular electroencephalography (EEG), most adequately reflects the morpho-functional state of the central nervous system, which is the basis of the mechanisms of mental activity, and the originality of the bioelectrical activity of the brain can be considered as the main indicator that determines a decrease in the level of intellectual development and, thereby, characterizes this state. This provision actualizes the search for highly informative indicators of the originality of the bioelectrical activity of the brain in children with intellectual disabilities. Purspose. With the use of periodometric analysis investigate EEG’s indicators and interhemispheric asymmetry of rhythms amplitudes in MR patients. Materials and methods. The EEG was recorded in a state of calm wakefulness with closed eyes with Neuron-Spectrum-2 electroencephalograph. Differences in indicators were tracked using the calculation of the coefficient of compliance (CC), EEG functional asymmetry coefficients in amplitude were determined, too. Results. It was revealed that in MR patients the amplitudes of the rhythms were greater than in healthy subjects. The greatest increase was determined in theta rhythm in the anterior temporal and posterior temporal leads in the left hemispheres. Duration indices in the delta, theta and alpha ranges of the EEG in mental retardation compared with the control group were increased, and the indices of the duration of beta rhythms - decreased. When analyzing FMPA in MR persons it turned out that in right-handers the negativeness of FMPA indices increased, and in left-handers there was an increase in the positivity of FMPA indices. Conclusions 1. With mental retardation, the amplitudes of the rhythms were greater than in healthy people. The greatest increase was determined in theta rhythm in the anterior temporal and posterior temporal leads in the left hemispheres. 2. The indices of duration in the delta, theta and alpha ranges of the EEG of MR subjects were increased, and the indices of the duration of beta rhythms – decreased. 3. When analyzing FMPA in MR persons, it turned out that in right-handers the negativeness of FMPA indices increased, and in left-handers there was an increase in the positivity of FMPA indices.


2007 ◽  
Vol 585 (1) ◽  
pp. 305-316 ◽  
Author(s):  
Alexander V. Gourine ◽  
Nicholas Dale ◽  
Enrique Llaudet ◽  
Dmitry M. Poputnikov ◽  
K. Michael Spyer ◽  
...  

2021 ◽  
Vol 5 (6) ◽  
pp. 16-19
Author(s):  
Chunpeng Wang ◽  
Xiaohui Liu ◽  
Shiwen Guo

Objective: The purpose of this study is to explore the role of sphingosine kinase 2 (SphK2) in the treatment of glioma, which is the most common primary tumor in the central nervous system. Methods: A total of 82 patients were included in this study, with 27 cases in the control group and 55 cases in the glioma group; the expressions of SphK2 and gp130 in the two groups were compared by immunohistochemical method, and the correlation between the two factors was analyzed. Results: Both SphK2 and gp130 were upregulated in the glioma group, and the two factors were significantly correlated. Conclusion: The high expression of SphK2 may play an important role in the occurrence, development, and diagnosis of glioma.


2015 ◽  
Vol 26 (1) ◽  
pp. 50-53

Multiple sclerosis is the most common demyelinating disease of the central nervous system, affecting mostly young people. There were many risk factors for MS identified, however a direct cause of the disease is still unknown. Pathological changes in the SM lead to the myelin sheath damage around axons, what prevents proper transmission of nerve impulses in the central nervous system. The aim of this study was analyzing and comparing the amino acids profile in the blood serum of MS patients to control group of healthy individuals and evaluating the relationship between them. Significant (p<0.05) differences in the level of glutamate, aspartate and taurine in the blood serum of MS patients were revealed. A positive glutamate and aspartate level correlation in the serum has been demonstrated. Gender is significant only in the case of glutamate level in blood serum. The studies highlight the important role of neurotransmitters in MS and are the initial step in proteomic research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Steven K. Yarmoska ◽  
Ali M. Alawieh ◽  
Stephen Tomlinson ◽  
Kimberly B. Hoang

The complement system is a highly conserved component of innate immunity that is involved in recognizing and responding to pathogens. The system serves as a bridge between innate and adaptive immunity, and modulation of the complement system can affect the entire host immune response to a foreign insult. Neoplastic diseases have been shown to engage the complement system in order to evade the immune system, gain a selective growth advantage, and co-opt the surrounding environment for tumor proliferation. Historically, the central nervous system has been considered to be an immune-privileged environment, but it is now clear that there are active roles for both innate and adaptive immunity within the central nervous system. Much of the research on the role of immunological modulation of neoplastic disease within the central nervous system has focused on adaptive immunity, even though innate immunity still plays a critical role in the natural history of central nervous system neoplasms. Here, we review the modulation of the complement system by a variety of neoplastic diseases of the central nervous system. We also discuss gaps in the current body of knowledge and comment on future directions for investigation.


PEDIATRICS ◽  
1974 ◽  
Vol 54 (4) ◽  
pp. 522-522
Author(s):  
Richard J. Schain

The paper by Quinn and Rapoport1 in the May issue of Pediatrics indicates a higher incidence of minor physical anomalies ("stigmata") in hyperactive boys compared to a control group. The authors believe that the presence of stigmata are a clue to the occurrence of insults affecting the fetus during early development. It is suggested that the hyperactive behavior disorder is also a result of the same insult affecting the central nervous system during early morphogenesis.


Author(s):  
К. Ляхова ◽  
K. Lyakhova ◽  
И. Колесникова ◽  
I. Kolesnikova ◽  
Д. Утина ◽  
...  

Purpose: Investigation of the dose–time–effect dependency of the behavior of mice and rats after irradiation with accelerated protons and comparison of these data with the morphological changes in the hippocampus and the cerebellum of rodents. Material and methods: Experiments were performed on outbred adult female ICR mice (CD-1), SPF categories, body weight 30–35 g, of the age of 10 weeks – total number 61 animals, and on 39 male Sprague Dawley outbred rats weighing 190–230 g, aged 6.5–7.5 weeks. The animals were irradiated with accelerated protons with energy of 70 MeV on the medical beam of the phasotron of the Joint Institute for Nuclear Research (Dubna). Mice were placed in individual containers and irradiated 4 ones at a time. Irradiation was performed in a modified Bragg peak at doses of 0.5; 1; 2.5 and 5 Gy in caudocranial and craniocaudal direction. Rats were divided into 2 groups: intact control and group irradiated with 170 MeV protons at a dose of 1 Gy, dose rate of 1 Gy / min in the craniocaudal direction. The behavioral responses of experimental animals were tested in the Open Field test on days 1, 7, 14, 30, 90 in rats and on days 8, 30, and 90 in mice. Quantitative analysis of the dilution of Purkinje cells in the rat cerebellum was made, as well as morphological changes in the rat hippocampal neurons. It was shown a development of structural changes after irradiation with protons in neurons of different severity at different times after exposure: after 30 and 90 days. Results: In the period of 1–8 days after proton irradiation of mice and rats in non-lethal doses (0.5–5.0 Gy), there is a dose-independent decrease in the main indicators of the spontaneous locomotor activity of rodents. By the 90th day after irradiation, there is a clear tendency to normalize the indicators of OIR in all groups of irradiated animals, while the ES remains elevated. Disruption of motor activity of rodents irradiated with protons in the early period and its relative normalization in the late post-irradiation period occur on the background of an increased number of morphologically altered and dystrophic neurons in the hippocampus and rarefied of Purkinje cells in the cerebellum. Conclusion: The complex hierarchical structure of the central nervous system, the dependence of its function on the state of the whole organism and its hormonal background, as well as on the state of the blood supply and other factors, along with its high plasticity, require complex physiological, morphological and neurochemical approaches in analyzing the radiobiological effect of corpuscular radiation, taking into consideration the unevenness in dose distribution during irradiation.


Sign in / Sign up

Export Citation Format

Share Document