scholarly journals Organoids-on-a-chip

Science ◽  
2019 ◽  
Vol 364 (6444) ◽  
pp. 960-965 ◽  
Author(s):  
Sunghee Estelle Park ◽  
Andrei Georgescu ◽  
Dongeun Huh

Recent studies have demonstrated an array of stem cell–derived, self-organizing miniature organs, termed organoids, that replicate the key structural and functional characteristics of their in vivo counterparts. As organoid technology opens up new frontiers of research in biomedicine, there is an emerging need for innovative engineering approaches for the production, control, and analysis of organoids and their microenvironment. In this Review, we explore organ-on-a-chip technology as a platform to fulfill this need and examine how this technology may be leveraged to address major technical challenges in organoid research. We also discuss emerging opportunities and future obstacles for the development and application of organoid-on-a-chip technology.

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1106
Author(s):  
Di Wang ◽  
Ye Cong ◽  
Quanfeng Deng ◽  
Xiahe Han ◽  
Suonan Zhang ◽  
...  

The pathogenesis of respiratory diseases is complex, and its occurrence and development also involve a series of pathological processes. The present research methods are have difficulty simulating the natural developing state of the disease in the body, and the results cannot reflect the real growth state and function in vivo. The development of microfluidic chip technology provides a technical platform for better research on respiratory diseases. The size of its microchannel can be similar to the space for cell growth in vivo. In addition, organ-on-a-chip can achieve long-term co-cultivation of multiple cells and produce precisely controllable fluid shear force, periodically changing mechanical force, and perfusate with varying solute concentration gradient. To sum up, the chip can be used to analyze the specific pathophysiological changes of organs meticulously, and it is widely used in scientific research on respiratory diseases. The focus of this review is to describe and discuss current studies of artificial respiratory systems based on organ-on-a-chip technology and to summarize their applications in the real world.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 50 ◽  
Author(s):  
Hashemzadeh ◽  
Allahverdi ◽  
Ghorbani ◽  
Soleymani ◽  
Kocsis ◽  
...  

Organ-on-a-chip technology has gained great interest in recent years given its ability to control the spatio-temporal microenvironments of cells and tissues precisely. While physical parameters of the respective niche such as microchannel network sizes, geometric features, flow rates, and shear forces, as well as oxygen tension and concentration gradients, have been optimized for stem cell cultures, little has been done to improve cell-matrix interactions in microphysiological systems. Specifically, detailed research on the effect of matrix elasticity and extracellular matrix (ECM) nanotopography on stem cell differentiation are still in its infancy, an aspect that is known to alter a stem cell’s fate. Although a wide range of hydrogels such as gelatin, collagen, fibrin, and others are available for stem cell chip cultivations, only a limited number of elasticities are generally employed. Matrix elasticity and the corresponding nanotopography are key factors that guide stem cell differentiation. Given this, we investigated the addition of gold nanowires into hydrogels to create a tunable biointerface that could be readily integrated into any organ-on-a-chip and cell chip system. In the presented work, we investigated the matrix elasticity (Young’s modulus, stiffness, adhesive force, and roughness) and nanotopography of gold nanowire loaded onto fibrin hydrogels using the bio-AFM (atomic force microscopy) method. Additionally, we investigated the capacity of human amniotic mesenchymal stem cells (hAMSCs) to differentiate into osteo- and chondrogenic lineages. Our results demonstrated that nanogold structured-hydrogels promoted differentiation of hAMSCs as shown by a significant increase in Collagen I and II production. Additionally, there was enhanced calcium mineralization activity and proteoglycans formation after a cultivation period of two weeks within microfluidic devices.


RSC Advances ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 1677-1685 ◽  
Author(s):  
Yaqing Wang ◽  
Li Wang ◽  
Yaqiong Guo ◽  
Yujuan Zhu ◽  
Jianhua Qin

We present a new strategy to engineer hiPSC-derived 3D brain organoids by combining stem cell biology with organs-on-a-chip technology.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Elisa Wasson ◽  
Karen Dubbin ◽  
Monica L. Moya

Interest in recapitulating in vivo phenomena in vitro using organ-on-a-chip technology has grown rapidly and with it, attention to the types of fluid flow experienced in the body has followed...


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S692-S692
Author(s):  
Mathias Hoehn ◽  
Uwe Himmelreich ◽  
Ralph Weber ◽  
Pedro Ramos-Cabrer ◽  
Susanne Wegener ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document