scholarly journals The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak

Science ◽  
2020 ◽  
Vol 368 (6489) ◽  
pp. 395-400 ◽  
Author(s):  
Matteo Chinazzi ◽  
Jessica T. Davis ◽  
Marco Ajelli ◽  
Corrado Gioannini ◽  
Maria Litvinova ◽  
...  

Motivated by the rapid spread of coronavirus disease 2019 (COVID-19) in mainland China, we use a global metapopulation disease transmission model to project the impact of travel limitations on the national and international spread of the epidemic. The model is calibrated on the basis of internationally reported cases and shows that, at the start of the travel ban from Wuhan on 23 January 2020, most Chinese cities had already received many infected travelers. The travel quarantine of Wuhan delayed the overall epidemic progression by only 3 to 5 days in mainland China but had a more marked effect on the international scale, where case importations were reduced by nearly 80% until mid-February. Modeling results also indicate that sustained 90% travel restrictions to and from mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.

Author(s):  
Matteo Chinazzi ◽  
Jessica T. Davis ◽  
Marco Ajelli ◽  
Corrado Gioannini ◽  
Maria Litvinova ◽  
...  

AbstractMotivated by the rapid spread of a novel coronavirus (2019-nCoV) in Mainland China, we use a global metapopulation disease transmission model to project the impact of both domestic and international travel limitations on the national and international spread of the epidemic. The model is calibrated on the evidence of internationally imported cases before the implementation of the travel quarantine of Wuhan. By assuming a generation time of 7.5 days, the reproduction number is estimated to be 2.4 [90% CI 2.2-2.6]. The median estimate for number of cases before the travel ban implementation on January 23, 2020 is 58,956 [90% CI 40,759 - 87,471] in Wuhan and 3,491 [90% CI 1,924 - 7,360] in other locations in Mainland China. The model shows that as of January 23, most Chinese cities had already received a considerable number of infected cases, and the travel quarantine delays the overall epidemic progression by only 3 to 5 days. The travel quarantine has a more marked effect at the international scale, where we estimate the number of case importations to be reduced by 80% until the end of February. Modeling results also indicate that sustained 90% travel restrictions to and from Mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050323
Author(s):  
Fuzhong Nian ◽  
Yayong Shi ◽  
Zhongkai Dang

Recently, the study about the disease transmission has received widespread attention. In the dynamics process of infectious disease, individual’s cognition about disease-related knowledge is an important factor that controls disease transmission. The disease-related information includes the cause, symptoms, transmission route and so on. Disease-related knowledge would influence the individual’s attitude toward disease, and influence the transmission rate and scale of the infectious disease. In order to study the impact of individual cognition on the transmission of disease, the disease transmission model based on individual cognition is proposed in this paper. Based on this model, we numerically simulate the transmission of disease in the small-world network and the BA scale-free network, respectively, and analyze the transmission dynamics behavior of the infectious disease. The simulation experiment verifies the validity of the theoretical result, which shows that this model is closer to the reality than traditional models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

AbstractEpidemic models are being used by governments to inform public health strategies to reduce the spread of SARS-CoV-2. They simulate potential scenarios by manipulating model parameters that control processes of disease transmission and recovery. However, the validity of these parameters is challenged by the uncertainty of the impact of public health interventions on disease transmission, and the forecasting accuracy of these models is rarely investigated during an outbreak. We fitted a stochastic transmission model on reported cases, recoveries and deaths associated with SARS-CoV-2 infection across 101 countries. The dynamics of disease transmission was represented in terms of the daily effective reproduction number ($$R_t$$ R t ). The relationship between public health interventions and $$R_t$$ R t was explored, firstly using a hierarchical clustering algorithm on initial $$R_t$$ R t patterns, and secondly computing the time-lagged cross correlation among the daily number of policies implemented, $$R_t$$ R t , and daily incidence counts in subsequent months. The impact of updating $$R_t$$ R t every time a prediction is made on the forecasting accuracy of the model was investigated. We identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between interventions were associated with a reduction on the duration of outbreaks. The lagged correlation analysis revealed that increased policy volume was associated with lower future $$R_t$$ R t (75 days lag), while a lower $$R_t$$ R t was associated with lower future policy volume (102 days lag). Lastly, the outbreak prediction accuracy of the model using dynamically updated $$R_t$$ R t produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when $$R_t$$ R t was kept constant. Monitoring the evolution of $$R_t$$ R t during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths, since it provides an early signal of the efficacy of containment measures. Using updated $$R_t$$ R t values produces significantly better predictions of future outbreaks. Our results found variation in the effect of early public health interventions on the evolution of $$R_t$$ R t over time and across countries, which could not be explained solely by the timing and number of the adopted interventions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fatima Khadadah ◽  
Abdullah A. Al-Shammari ◽  
Ahmad Alhashemi ◽  
Dari Alhuwail ◽  
Bader Al-Saif ◽  
...  

Abstract Background Aggressive non-pharmaceutical interventions (NPIs) may reduce transmission of SARS-CoV-2. The extent to which these interventions are successful in stopping the spread have not been characterized in countries with distinct socioeconomic groups. We compared the effects of a partial lockdown on disease transmission among Kuwaitis (P1) and non-Kuwaitis (P2) living in Kuwait. Methods We fit a modified metapopulation SEIR transmission model to reported cases stratified by two groups to estimate the impact of a partial lockdown on the effective reproduction number ($$ {\mathcal{R}}_e $$ R e ). We estimated the basic reproduction number ($$ {\mathcal{R}}_0 $$ R 0 ) for the transmission in each group and simulated the potential trajectories of an outbreak from the first recorded case of community transmission until 12 days after the partial lockdown. We estimated $$ {\mathcal{R}}_e $$ R e values of both groups before and after the partial curfew, simulated the effect of these values on the epidemic curves and explored a range of cross-transmission scenarios. Results We estimate $$ {\mathcal{R}}_e $$ R e at 1·08 (95% CI: 1·00–1·26) for P1 and 2·36 (2·03–2·71) for P2. On March 22nd, $$ {\mathcal{R}}_e $$ R e for P1 and P2 are estimated at 1·19 (1·04–1·34) and 1·75 (1·26–2·11) respectively. After the partial curfew had taken effect, $$ {\mathcal{R}}_e $$ R e for P1 dropped modestly to 1·05 (0·82–1·26) but almost doubled for P2 to 2·89 (2·30–3·70). Our simulated epidemic trajectories show that the partial curfew measure greatly reduced and delayed the height of the peak in P1, yet significantly elevated and hastened the peak in P2. Modest cross-transmission between P1 and P2 greatly elevated the height of the peak in P1 and brought it forward in time closer to the peak of P2. Conclusion Our results indicate and quantify how the same lockdown intervention can accentuate disease transmission in some subpopulations while potentially controlling it in others. Any such control may further become compromised in the presence of cross-transmission between subpopulations. Future interventions and policies need to be sensitive to socioeconomic and health disparities.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1180
Author(s):  
Tinevimbo Shiri ◽  
Marc Evans ◽  
Carla A. Talarico ◽  
Angharad R. Morgan ◽  
Maaz Mussad ◽  
...  

Debate persists around the risk–benefit balance of vaccinating adolescents and children against COVID-19. Central to this debate is quantifying the contribution of adolescents and children to the transmission of SARS-CoV-2, and the potential impact of vaccinating these age groups. In this study, we present a novel SEIR mathematical disease transmission model that quantifies the impact of different vaccination strategies on population-level SARS-CoV-2 infections and clinical outcomes. The model employs both age- and time-dependent social mixing patterns to capture the impact of changes in restrictions. The model was used to assess the impact of vaccinating adolescents and children on the natural history of the COVID-19 pandemic across all age groups, using the UK as an example. The base case model demonstrates significant increases in COVID-19 disease burden in the UK following a relaxation of restrictions, if vaccines are limited to those ≥18 years and vulnerable adolescents (≥12 years). Including adolescents and children in the vaccination program could reduce overall COVID-related mortality by 57%, and reduce cases of long COVID by 75%. This study demonstrates that vaccinating adolescents and children has the potential to play a vital role in reducing SARS-CoV-2 infections, and subsequent COVID-19 morbidity and mortality, across all ages. Our results have major global public health implications and provide valuable information to inform a potential pandemic exit strategy.


Author(s):  
Leslie Dietz ◽  
Patrick F. Horve ◽  
David Coil ◽  
Mark Fretz ◽  
Jonathan Eisen ◽  
...  

With the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that results in coronavirus disease 2019 (COVID-19), corporate entities, federal, state, county and city governments, universities, school districts, places of worship, prisons, health care facilities, assisted living organizations, daycares, homeowners, and other building owners and occupants have an opportunity to reduce the potential for transmission through built environment (BE) mediated pathways. Over the last decade, substantial research into the presence, abundance, diversity, function, and transmission of microbes in the BE has taken place and revealed common pathogen exchange pathways and mechanisms. In this paper, we synthesize this microbiology of the BE research and the known information about SARS-CoV-2 to provide actionable and achievable guidance to BE decision makers, building operators, and all indoor occupants attempting to minimize infectious disease transmission through environmentally mediated pathways. We believe this information is useful to corporate and public administrators and individuals responsible for building operations and environmental services in their decision-making process about the degree and duration of social-distancing measures during viral epidemics and pandemics.


2009 ◽  
Vol 39 (2) ◽  
pp. 936-941 ◽  
Author(s):  
Jean Jules Tewa ◽  
Jean Luc Dimi ◽  
Samuel Bowong

Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
D. Abraham Vianny ◽  
Mary Jacintha ◽  
Fatma Bozkurt Yousef

Towards the end of 2019, the world witnessed the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19), a new strain of coronavirus that was unidentified in humans previously. In this paper, a new fractional-order Susceptible–Exposed–Infected–Hospitalized–Recovered (SEIHR) model is formulated for COVID-19, where the population is infected due to human transmission. The fractional-order discrete version of the model is obtained by the process of discretization and the basic reproductive number is calculated with the next-generation matrix approach. All equilibrium points related to the disease transmission model are then computed. Further, sufficient conditions to investigate all possible equilibria of the model are established in terms of the basic reproduction number (local stability) and are supported with time series, phase portraits and bifurcation diagrams. Finally, numerical simulations are provided to demonstrate the theoretical findings.


Sign in / Sign up

Export Citation Format

Share Document