scholarly journals The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-nCoV) outbreak

Author(s):  
Matteo Chinazzi ◽  
Jessica T. Davis ◽  
Marco Ajelli ◽  
Corrado Gioannini ◽  
Maria Litvinova ◽  
...  

AbstractMotivated by the rapid spread of a novel coronavirus (2019-nCoV) in Mainland China, we use a global metapopulation disease transmission model to project the impact of both domestic and international travel limitations on the national and international spread of the epidemic. The model is calibrated on the evidence of internationally imported cases before the implementation of the travel quarantine of Wuhan. By assuming a generation time of 7.5 days, the reproduction number is estimated to be 2.4 [90% CI 2.2-2.6]. The median estimate for number of cases before the travel ban implementation on January 23, 2020 is 58,956 [90% CI 40,759 - 87,471] in Wuhan and 3,491 [90% CI 1,924 - 7,360] in other locations in Mainland China. The model shows that as of January 23, most Chinese cities had already received a considerable number of infected cases, and the travel quarantine delays the overall epidemic progression by only 3 to 5 days. The travel quarantine has a more marked effect at the international scale, where we estimate the number of case importations to be reduced by 80% until the end of February. Modeling results also indicate that sustained 90% travel restrictions to and from Mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.

Science ◽  
2020 ◽  
Vol 368 (6489) ◽  
pp. 395-400 ◽  
Author(s):  
Matteo Chinazzi ◽  
Jessica T. Davis ◽  
Marco Ajelli ◽  
Corrado Gioannini ◽  
Maria Litvinova ◽  
...  

Motivated by the rapid spread of coronavirus disease 2019 (COVID-19) in mainland China, we use a global metapopulation disease transmission model to project the impact of travel limitations on the national and international spread of the epidemic. The model is calibrated on the basis of internationally reported cases and shows that, at the start of the travel ban from Wuhan on 23 January 2020, most Chinese cities had already received many infected travelers. The travel quarantine of Wuhan delayed the overall epidemic progression by only 3 to 5 days in mainland China but had a more marked effect on the international scale, where case importations were reduced by nearly 80% until mid-February. Modeling results also indicate that sustained 90% travel restrictions to and from mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.


2020 ◽  
Vol 9 (2) ◽  
pp. 571 ◽  
Author(s):  
Péter Boldog ◽  
Tamás Tekeli ◽  
Zsolt Vizi ◽  
Attila Dénes ◽  
Ferenc A. Bartha ◽  
...  

We developed a computational tool to assess the risks of novel coronavirus outbreaks outside of China. We estimate the dependence of the risk of a major outbreak in a country from imported cases on key parameters such as: (i) the evolution of the cumulative number of cases in mainland China outside the closed areas; (ii) the connectivity of the destination country with China, including baseline travel frequencies, the effect of travel restrictions, and the efficacy of entry screening at destination; and (iii) the efficacy of control measures in the destination country (expressed by the local reproduction number R loc ). We found that in countries with low connectivity to China but with relatively high R loc , the most beneficial control measure to reduce the risk of outbreaks is a further reduction in their importation number either by entry screening or travel restrictions. Countries with high connectivity but low R loc benefit the most from policies that further reduce R loc . Countries in the middle should consider a combination of such policies. Risk assessments were illustrated for selected groups of countries from America, Asia, and Europe. We investigated how their risks depend on those parameters, and how the risk is increasing in time as the number of cases in China is growing.


2020 ◽  
Vol 117 (13) ◽  
pp. 7504-7509 ◽  
Author(s):  
Chad R. Wells ◽  
Pratha Sah ◽  
Seyed M. Moghadas ◽  
Abhishek Pandey ◽  
Affan Shoukat ◽  
...  

The novel coronavirus outbreak (COVID-19) in mainland China has rapidly spread across the globe. Within 2 mo since the outbreak was first reported on December 31, 2019, a total of 566 Severe Acute Respiratory Syndrome (SARS CoV-2) cases have been confirmed in 26 other countries. Travel restrictions and border control measures have been enforced in China and other countries to limit the spread of the outbreak. We estimate the impact of these control measures and investigate the role of the airport travel network on the global spread of the COVID-19 outbreak. Our results show that the daily risk of exporting at least a single SARS CoV-2 case from mainland China via international travel exceeded 95% on January 13, 2020. We found that 779 cases (95% CI: 632 to 967) would have been exported by February 15, 2020 without any border or travel restrictions and that the travel lockdowns enforced by the Chinese government averted 70.5% (95% CI: 68.8 to 72.0%) of these cases. In addition, during the first three and a half weeks of implementation, the travel restrictions decreased the daily rate of exportation by 81.3% (95% CI: 80.5 to 82.1%), on average. At this early stage of the epidemic, reduction in the rate of exportation could delay the importation of cases into cities unaffected by the COVID-19 outbreak, buying time to coordinate an appropriate public health response.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050323
Author(s):  
Fuzhong Nian ◽  
Yayong Shi ◽  
Zhongkai Dang

Recently, the study about the disease transmission has received widespread attention. In the dynamics process of infectious disease, individual’s cognition about disease-related knowledge is an important factor that controls disease transmission. The disease-related information includes the cause, symptoms, transmission route and so on. Disease-related knowledge would influence the individual’s attitude toward disease, and influence the transmission rate and scale of the infectious disease. In order to study the impact of individual cognition on the transmission of disease, the disease transmission model based on individual cognition is proposed in this paper. Based on this model, we numerically simulate the transmission of disease in the small-world network and the BA scale-free network, respectively, and analyze the transmission dynamics behavior of the infectious disease. The simulation experiment verifies the validity of the theoretical result, which shows that this model is closer to the reality than traditional models.


Author(s):  
Péter Boldog ◽  
Tamás Tekeli ◽  
Zsolt Vizi ◽  
Attila Dénes ◽  
Ferenc A. Bartha ◽  
...  

AbstractWe developed a computational tool to assess the risks of novel coronavirus outbreaks outside of China. We estimate the dependence of the risk of a major outbreak in a country from imported cases on key parameters such as: (i) the evolution of the cumulative number of cases in mainland China outside the closed areas; (ii) the connectivity of the destination country with China, including baseline travel frequencies, the effect of travel restrictions, and the efficacy of entry screening at destination; and (iii) the efficacy of control measures in the destination country (expressed by the local reproduction number Rloc). We found that in countries with low connectivity to China but with relatively high Rloc, the most beneficial control measure to reduce the risk of outbreaks is a further reduction in their importation number either by entry screening or travel restrictions. Countries with high connectivity but low Rloc benefit the most from policies that further reduce Rloc. Countries in the middle should consider a combination of such policies. Risk assessments were illustrated for selected groups of countries from America, Asia, and Europe. We investigated how their risks depend on those parameters, and how the risk is increasing in time as the number of cases in China is growing.


Author(s):  
Sultanah M. Alshammari ◽  
Waleed K. Almutiry ◽  
Harsha Gwalani ◽  
Saeed M. Algarni ◽  
Kawther Saeedi

AbstractSince the early days of the coronavirus (COVID-19) outbreak in Wuhan, China, Saudi Arabia started to implement several preventative measures starting with the imposition of travel restrictions to and from China. Due to the rapid spread of COVID-19, and with the first confirmed case in Saudi Arabia in March 2019, more strict measures, such as international travel restriction, and suspension or cancellation of major events, social gatherings, prayers at mosques, and sports competitions, were employed. These non-pharmaceutical interventions aim to reduce the extent of the epidemic due to the implications of international travel and mass gatherings on the increase in the number of new cases locally and globally. Since this ongoing outbreak is the first of its kind in the modern world, the impact of suspending mass gatherings on the outbreak is unknown and difficult to measure. We use a stratified SEIR epidemic model to evaluate the impact of Umrah, a global Muslim pilgrimage to Mecca, on the spread of the COVID-19 pandemic during the month of Ramadan, the peak of the Umrah season. The analyses shown in the paper provide insights into the effects of global mass gatherings such as Hajj and Umrah on the progression of the COVID-19 pandemic locally and globally.


Author(s):  
Jessica T. Davis ◽  
Matteo Chinazzi ◽  
Nicola Perra ◽  
Kunpeng Mu ◽  
Ana Pastore y Piontti ◽  
...  

We use a global metapopulation transmission model to study the establishment of sustained and undetected community transmission of the COVID-19 epidemic in the United States. The model is calibrated on international case importations from mainland China and takes into account travel restrictions to and from international destinations. We estimate widespread community transmission of SARS-CoV-2 in February, 2020. Modeling results indicate international travel as the key driver of the introduction of SARS-CoV-2 in the West and East Coast metropolitan areas that could have been seeded as early as late-December, 2019. For most of the continental states the largest contribution of imported infections arrived through domestic travel flows.


2020 ◽  
Author(s):  
Jessica Liebig ◽  
Kamran Najeebullah ◽  
Raja Jurdak ◽  
Ahmad El Shoghri ◽  
Dean Paini

ABSTRACTNovel coronavirus disease (COVID-19) has spread across the world at an unprecedented pace, reaching over 200 countries and territories in less than three months. In response, many governments denied entry to travellers arriving from various countries affected by the virus. While several industries continue to experience economic losses due to the imposed interventions, it is unclear whether the different travel restrictions were successful in reducing COVID-19 importations. Here we develop a comprehensive framework to model daily COVID-19 importations, considering different travel bans. We quantify the temporal effects of the restrictions and elucidate the relationship between incidence rates in other countries, travel flows and the expected number of importations into the country under investigation. As a cases study, we evaluate the travel bans enforced by the Australian government. We find that international travel bans in Australia lowered COVID-19 importations by 87.68% (83.39 - 91.35) between January and June 2020. The presented framework can further be used to gain insights into how many importations to expect should borders re-open. Authorities may consider the presented information when planning a phased re-opening of international borders.


2021 ◽  
Author(s):  
Thien Minh Le ◽  
Raynal Louis ◽  
Octavious Talbot ◽  
Hali L Hambridge ◽  
Christopher Drovandi ◽  
...  

During the COVID-19 pandemic, many countries implemented international travel restrictions that aimed to contain viral spread while still allowing necessary cross-border travel for social and economic reasons. The relative effectiveness of these approaches for controlling the pandemic has gone largely unstudied. Here we developed a flexible network meta-population model to compare the effectiveness of international travel policies, with a focus on evaluating the benefit of policy coordination. Because country-level epidemiological parameters are unknown, they need to be estimated from data; we accomplished this using approximate Bayesian computation, given the nature of our complex stochastic disease transmission model. Based on simulation and theoretical insights we find that, under our proposed policy, international airline travel may resume up to 58% of the pre-pandemic level with pandemic control comparable to that of a complete shutdown of all airline travel. Our results demonstrate that global coordination is necessary to allow for maximum travel with minimum effect on viral spread.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jessica Liebig ◽  
Kamran Najeebullah ◽  
Raja Jurdak ◽  
Ahmad El Shoghri ◽  
Dean Paini

Abstract Background Novel coronavirus disease (COVID-19) has spread across the world at an unprecedented pace, reaching over 200 countries and territories in less than three months. In response, many governments denied entry to travellers arriving from various countries affected by the virus. While several industries continue to experience economic losses due to the imposed interventions, it is unclear whether the different travel restrictions were successful in reducing COVID-19 importations. Methods Here we develop a comprehensive probabilistic framework to model daily COVID-19 importations, considering different travel bans. We quantify the temporal effects of the restrictions and elucidate the relationship between incidence rates in other countries, travel flows and the expected number of importations into the country under investigation. Results As a cases study, we evaluate the travel bans enforced by the Australian government. We find that international travel bans in Australia lowered COVID-19 importations by 87.68% (83.39 - 91.35) between January and June 2020. The presented framework can further be used to gain insights into how many importations to expect should borders re-open. Conclusions While travel bans lowered the number of COVID-19 importations overall, the effectiveness of bans on individual countries varies widely and directly depends on the change in behaviour in returning residents and citizens. Authorities may consider the presented information when planning a phased re-opening of international borders.


Sign in / Sign up

Export Citation Format

Share Document