scholarly journals Lithium pollution of a white dwarf records the accretion of an extrasolar planetesimal

Science ◽  
2020 ◽  
Vol 371 (6525) ◽  
pp. 168-172
Author(s):  
B. C. Kaiser ◽  
J. C. Clemens ◽  
S. Blouin ◽  
P. Dufour ◽  
R. J. Hegedus ◽  
...  

Tidal disruption and subsequent accretion of planetesimals by white dwarfs can reveal the elemental abundances of rocky bodies in exoplanetary systems. Those abundances provide information on the composition of the nebula from which the systems formed, which is analogous to how meteorite abundances inform our understanding of the early Solar System. We report the detection of lithium, sodium, potassium, and calcium in the atmosphere of the white dwarf Gaia DR2 4353607450860305024, which we ascribe to the accretion of a planetesimal. Using model atmospheres, we determine abundance ratios of these elements, and, with the exception of lithium, they are consistent with meteoritic values in the Solar System. We compare the measured lithium abundance with measurements in old stars and with expectations from Big Bang nucleosynthesis.

2009 ◽  
Vol 5 (S268) ◽  
pp. 201-210
Author(s):  
Monique Spite ◽  
François Spite

AbstractThe nuclei of the lithium isotopes are fragile, easily destroyed, so that, at variance with most of the other elements, they cannot be formed in stars through steady hydrostatic nucleosynthesis.The 7Li isotope is synthesized during primordial nucleosynthesis in the first minutes after the Big Bang and later by cosmic rays, by novae and in pulsations of AGB stars (possibly also by the ν process). 6Li is mainly formed by cosmic rays. The oldest (most metal-deficient) warm galactic stars should retain the signature of these processes if, (as it had been often expected) lithium is not depleted in these stars. The existence of a “plateau” of the abundance of 7Li (and of its slope) in the warm metal-poor stars is discussed. At very low metallicity ([Fe/H] < −2.7dex) the star to star scatter increases significantly towards low Li abundances. The highest value of the lithium abundance in the early stellar matter of the Galaxy (logϵ(Li) = A(7Li) = 2.2 dex) is much lower than the the value (logϵ(Li) = 2.72) predicted by the standard Big Bang nucleosynthesis, according to the specifications found by the satellite WMAP. After gathering a homogeneous stellar sample, and analysing its behaviour, possible explanations of the disagreement between Big Bang and stellar abundances are discussed (including early astration and diffusion). On the other hand, possibilities of lower productions of 7Li in the standard and/or non-standard Big Bang nucleosyntheses are briefly evoked.A surprisingly high value (A(6Li)=0.8 dex) of the abundance of the 6Li isotope has been found in a few warm metal-poor stars. Such a high abundance of 6Li independent of the mean metallicity in the early Galaxy cannot be easily explained. But are we really observing 6Li?


2021 ◽  
Vol 503 (2) ◽  
pp. 1877-1883
Author(s):  
Amy Bonsor ◽  
Paula Jofré ◽  
Oliver Shorttle ◽  
Laura K Rogers ◽  
Siyi Xu(许偲艺) ◽  
...  

ABSTRACT Planets and stars ultimately form out of the collapse of the same cloud of gas. Whilst planets, and planetary bodies, readily loose volatiles, a common hypothesis is that they retain the same refractory composition as their host star. This is true within the Solar system. The refractory composition of chondritic meteorites, Earth, and other rocky planetary bodies are consistent with solar, within the observational errors. This work aims to investigate whether this hypothesis holds for exoplanetary systems. If true, the internal structure of observed rocky exoplanets can be better constrained using their host star abundances. In this paper, we analyse the abundances of the K-dwarf, G200-40, and compare them to its polluted white dwarf companion, WD 1425+540. The white dwarf has accreted planetary material, most probably a Kuiper belt-like object, from an outer planetary system surviving the star’s evolution to the white dwarf phase. Given that binary pairs are chemically homogeneous, we use the binary companion, G200-40, as a proxy for the composition of the progenitor to WD 1425+540. We show that the elemental abundances of the companion star and the planetary material accreted by WD 1425+540 are consistent with the hypothesis that planet and host-stars have the same true abundances, taking into account the observational errors.


2013 ◽  
Vol 53 (A) ◽  
pp. 534-537 ◽  
Author(s):  
Carlo Gustavino

The <sup>2</sup>H(α, γ)<sup>6</sup>Li reaction is the leading process for the production of <sup>6</sup>Li in standard Big Bang Nucleosynthesis. Recent observations of lithium abundance in metal-poor halo stars suggest that there might be a 6Li plateau, similar to the well-known Spite plateau of <sup>7</sup>Li. This calls for a re-investigation of the standard production channel for <sup>6</sup>Li. As the <sup>2</sup>H(α, γ)<sup>6</sup>Li cross section drops steeply at low energy, it has never before been studied directly at Big Bang energies. For the first time the reaction has been studied directly at Big Bang energies at the LUNA accelerator. The preliminary data and their implications for Big Bang nucleosynthesis and the purported <sup>6</sup>Li problem will be shown.


2019 ◽  
Vol 128 (5) ◽  
pp. 707-712 ◽  
Author(s):  
V. Singh ◽  
J. Lahiri ◽  
D. Bhowmick ◽  
D. N. Basu

2008 ◽  
Vol 78 (8) ◽  
Author(s):  
Chris Bird ◽  
Kristen Koopmans ◽  
Maxim Pospelov

2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Gary Steigman

According to the standard models of particle physics and cosmology, there should be a background of cosmic neutrinos in the present Universe, similar to the cosmic microwave photon background. The weakness of the weak interactions renders this neutrino background undetectable with current technology. The cosmic neutrino background can, however, be probed indirectly through its cosmological effects on big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) radiation. In this BBN review, focused on neutrinos and more generally on dark radiation, the BBN constraints on the number of “equivalent neutrinos” (dark radiation), on the baryon asymmetry (baryon density), and on a possible lepton asymmetry (neutrino degeneracy) are reviewed and updated. The BBN constraints on dark radiation and on the baryon density following from considerations of the primordial abundances of deuterium and helium-4 are in excellent agreement with the complementary results from the CMB, providing a suggestive, but currently inconclusive, hint of the presence of dark radiation, and they constrain any lepton asymmetry. For all the cases considered here there is a “lithium problem”: the BBN-predicted lithium abundance exceeds the observationally inferred primordial value by a factor of~3.


2019 ◽  
Vol 489 (1) ◽  
pp. 420-426 ◽  
Author(s):  
Nicholas J Ruffini ◽  
Andrew R Casey

ABSTRACT Observations of stellar remnants linked to Type Ia and Type Iax supernovae are necessary to fully understand their progenitors. Multiple progenitor scenarios predict a population of kicked donor remnants and partially burnt primary remnants, both moving with relatively high velocity. But only a handful of examples consistent with these two predicted populations have been observed. Here we report the likely first known example of an unbound white dwarf that is consistent with being the fully cooled primary remnant to a Type Iax supernova. The candidate, LP 93-21, is travelling with a galactocentric velocity of $v_{\textrm {gal}} \simeq 605\, {\rm km}\, {\rm s}^{-1}$, and is gravitationally unbound to the Milky Way. We rule out an extragalactic origin. The Type Iax supernova ejection scenario is consistent with its peculiar unbound trajectory, given anomalous elemental abundances are detected in its photosphere via spectroscopic follow-up. This discovery reflects recent models that suggest stellar ejections likely occur often. Unfortunately the intrinsic faintness of white dwarfs, and the uncertainty associated with their direct progenitor systems, makes it difficult to detect and confirm such donors.


2020 ◽  
Vol 638 ◽  
pp. A81
Author(s):  
Emanuele Tognelli ◽  
Pier Giorgio Prada Moroni ◽  
Scilla Degl’Innocenti ◽  
Maurizio Salaris ◽  
Santi Cassisi

Context. The cosmological lithium problem, that is, the discrepancy between the lithium abundance predicted by the Big Bang nucleosynthesis and the one observed for the stars of the “Spite plateau”, is one of the long standing problems of modern astrophysics. Recent hints for a possible solution involve lithium burning induced by protostellar mass accretion on Spite plateau stars. However, to date, most of the protostellar and pre-main sequence stellar models that take mass accretion into account have been computed at solar metallicity, and a detailed analysis on the impact of protostellar accretion on the lithium evolution in the metal-poor regime, which is relevant for stars in the Spite plateau, is completely missing. Aims. The purpose of this paper is to fill this gap, analysing, in detail, for the first time the effect of protostellar accretion on low metallicity low-mass stars with a focus on pre-main sequence lithium evolution. Methods. We computed the evolution from the protostar to the main-sequence phase of accreting models with final masses equal to 0.7 and 0.8 M⊙, and three metallicities Z = 0.0001, Z = 0.0010, and Z = 0.0050, corresponding to [Fe/H] ∼ −2.1, −1.1 (typical of Spite plateau stars), and [Fe/H] ∼ −0.42, respectively. We followed the temporal evolution of the chemical composition by considering nuclear burning, convective mixing, and diffusion. The effects of changing some of the main parameters affecting accreting models, that is the accretion energy (i.e. cold versus hot accretion), the initial seed mass Mseed and radius Rseed, and the mass accretion rate ṁ (also considering episodic accretion), have been investigated in detail. Results. As for the main stellar properties and in particular the surface 7Li abundance, hot accretion models converge to standard non-accreting ones within 1 Myr, regardless of the actual value of Mseed, Rseed, and ṁ. Also, cold accretion models with a relatively large Mseed (≳10 MJ) or Rseed (≳1 R⊙) converge to standard non-accreting ones in less than about 10−20 Myr. However, a drastically different evolution occurs whenever a cold protostellar accretion process starts from small values of Mseed and Rseed (Mseed ∼ 1 MJ, Rseed ≲ 1 R⊙). These models almost entirely skip the standard Hayashi track evolution and deplete lithium before the end of the accretion phase. The exact amount of depletion depends on the actual combination of the accretion parameters (ṁ, Mseed, and Rseed), achieving in some cases the complete exhaustion of lithium in the whole star. Finally, the lithium evolution in models accounting for burst accretion episodes or for an initial hot accretion followed by a cold accretion phase closely resemble that of standard non-accreting ones. Conclusions. To significantly deplete lithium in low-mass metal poor stars by means of protostellar accretion, a cold accretion scenario starting from small initial Mseed and Rseed is required. Even in this extreme configuration leading to a non-standard evolution that misses almost entirely the standard Hayashi track, an unsatisfactory fine tuning of the parameters governing the accretion phase is required to deplete lithium in stars of different mass and metallicity – starting from the Big Bang nucleosynthesis abundance – in such a way as to produce the observed Spite plateau.


2015 ◽  
Vol 11 (S317) ◽  
pp. 300-301
Author(s):  
Xiaoting Fu ◽  
Alessandro Bressan ◽  
Paolo Molaro ◽  
Paola Marigo

AbstractLithium abundance derived in metal-poor main sequence stars is about three times lower than the primordial value of the standard Big Bang nucleosynthesis prediction. This disagreement is referred to as the lithium problem. We reconsider the stellar Li evolution from the pre-main sequence to the end of main sequence phase by introducing the effects of overshooting and residual mass accretion. We show that 7Li could be significantly depleted by convective overshooting in the pre-main sequence phase and then partially restored in the stellar atmosphere by residual accretion which follows the Li depletion phase and could be regulated by EUV photo-evaporation. By considering the conventional nuclear burning and diffusion along the main sequence we can reproduce the Spite plateau for stars with initial mass m0=0.62–0.80 M⊙, and the Li declining branch for lower mass dwarfs, e.g, m0=0.57–0.60 M⊙, for a wide range of metallicities (Z=0.00001 to Z=0.0005), starting from an initial Li abundance A(Li) = 2.72.


2008 ◽  
Vol 86 (4) ◽  
pp. 611-616
Author(s):  
M Pospelov

We point out that the existence of metastable, τ >103 s, negatively charged electroweak-scale particles (X–) alters the predictions for lithium and other primordial elemental abundances for A > 4 via the formation of bound states with nuclei during Big-Bang nucleosynthesis (BBN). In particular, we show that the bound states of X– with helium, formed at temperatures of about T = 108 K, lead to the catalytic enhancement of 6Li production, which is eight orders of magnitude more efficient than the standard channel. In particle physics models, where subsequent decay of X– does not lead to large nonthermal BBN effects, this directly translates to the level of sensitivity to the number density of long-lived X– particles (τ > 105 s) relative to entropy of nX – / s [Formula: see text] 3 × 10–17, which is one of the most stringent probes of electroweak scale remnants known to date. It is also argued that unstable charged particles with lifetime of order ~2000 s may naturally lead to the depletion of 7Li by a factor of two, making it consistent with observationally determined abundances. PACS No.: 98.80.Ft


Sign in / Sign up

Export Citation Format

Share Document