scholarly journals An isoform of Dicer protects mammalian stem cells against multiple RNA viruses

Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. 231-236 ◽  
Author(s):  
Enzo Z. Poirier ◽  
Michael D. Buck ◽  
Probir Chakravarty ◽  
Joana Carvalho ◽  
Bruno Frederico ◽  
...  

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses—including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.

mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Susan Schuster ◽  
Lotte E. Tholen ◽  
Gijs J. Overheul ◽  
Frank J. M. van Kuppeveld ◽  
Ronald P. van Rij

ABSTRACT The contribution of the RNA interference (RNAi) pathway in antiviral immunity in vertebrates has been widely debated. It has been proposed that RNAi possesses antiviral activity in mammalian systems but that its antiviral effect is masked by the potent antiviral interferon response in differentiated mammalian cells. In this study, we show that inactivation of the interferon response is not sufficient to uncover antiviral activity of RNAi in human epithelial cells infected with three wild-type positive-sense RNA viruses. Antiviral immunity in insects and plants is mediated by the RNA interference (RNAi) pathway in which viral long double-stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer enzymes. Although this pathway is evolutionarily conserved, its involvement in antiviral defense in mammals is the subject of debate. In vertebrates, recognition of viral RNA induces a sophisticated type I interferon (IFN)-based immune response, and it has been proposed that this response masks or inhibits antiviral RNAi. To test this hypothesis, we analyzed viral small RNA production in differentiated cells deficient in the cytoplasmic RNA sensors RIG-I and MDA5. We did not detect 22-nucleotide (nt) viral siRNAs upon infection with three different positive-sense RNA viruses. Our data suggest that the depletion of cytoplasmic RIG-I-like sensors is not sufficient to uncover viral siRNAs in differentiated cells. IMPORTANCE The contribution of the RNA interference (RNAi) pathway in antiviral immunity in vertebrates has been widely debated. It has been proposed that RNAi possesses antiviral activity in mammalian systems but that its antiviral effect is masked by the potent antiviral interferon response in differentiated mammalian cells. In this study, we show that inactivation of the interferon response is not sufficient to uncover antiviral activity of RNAi in human epithelial cells infected with three wild-type positive-sense RNA viruses.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5470-5470
Author(s):  
Patrick Maier ◽  
Carsten Herskind ◽  
Fleckenstein Katharina ◽  
Stephanie Laufs ◽  
Jens W. Zeller ◽  
...  

Abstract Normal haematopoietic stem cells are particularly sensitive to radiation-induced apoptosis. Overexpression of the multidrug resistance 1 (MDR1) gene product, P-glycoprotein (P-gp), leads to suppression of apoptosis and is radioprotective in the human lymphoblastoid cell line TK6. Therefore, gene therapy with MDR1 might protect bone marrow cells during tumour-radiotherapy. The aim of this study was to test if human CD34(+) blood stem cells can be protected from the effect of radiation by MDR1 gene transduction. MDR1 cDNA was cloned into the lentiviral SIN-vector pHR’SINcPPT-SEW to replace the eGFP cDNA. CD34(+) cells isolated from four individual donors were exposed to lentiviral supernatants with an MOI of 10 of either HR’SIN-MDR1 or HR’SINcPPT-SEW as a control. After lentiviral transduction, 0.8×105 cells of transduced and non-transduced CD34(+) control cells, respectively, were irradiated with 0–8 Gy and held in liquid culture under differentiation conditions. Ten days after irradiation, the amount of MDR1 expressing cells was determined by the Rhodamine-(Rh−)123 efflux assay and the MDR1-expression rate was monitored by real-time PCR. Additionally, the differentiation status was tested with FACS-analyses for CD11b (myeloid and natural killer cells), CD15 (neutrophils, eosinophils, monocytes), CD33 (myeloid progenitor cells, monocytes), and CD34 (hematopoietic precursors) expression. To test the potential of MDR1 to protect differentiated cells, unirradiated cells were irradiated after 10 days in liquid culture. Apoptotic cells were detected 48 hours later by staining with Annexin V. The transduction efficiency for the MDR1-virus was 3–18%, for the GFP-virus 12–60%. The proportion of RH-123-negative (=MDR1-positive) cells of all four donors increased with escalating radiation doses (e.g. 18–54% from 0–8 Gy). Irradiation of the differentiated cells after ten days of liquid culture also led to an increase of RH-123-negative cells with escalating radiation doses (e.g. 12.5–17% from 0–8 Gy). We found a correlation between radiation dose and differentiation status: independent on transduction the amount of CD11b-cells increased at 2–4 Gy (e.g from 23–45%) and decreased to 9% with 8 Gy; a similar course was also seen for CD15 expression. Our results clearly indicate the radioprotective effect of human blood stem cells by lentiviral MDR1-overexpression. Thus, enhancing repopulation by surviving stem cells may increase the irradiation tolerance of hematopoietic cells and thus contribute to widening the therapeutic range in radiotherapy.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 361
Author(s):  
Rui-Zhu Shi ◽  
Yuan-Qing Pan ◽  
Li Xing

The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1187
Author(s):  
Michael Wassenegger ◽  
Athanasios Dalakouras

Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host’s RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM’s mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 721-731 ◽  
Author(s):  
Teresa D Shippy ◽  
Jianhua Guo ◽  
Susan J Brown ◽  
Richard W Beeman ◽  
Robin E Denell

Abstract The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.


Sign in / Sign up

Export Citation Format

Share Document