Aberrant Ca 2+ signaling by IP 3 Rs in adipocytes links inflammation to metabolic dysregulation in obesity

2021 ◽  
Vol 14 (713) ◽  
Author(s):  
Ekin Guney ◽  
Ana Paula Arruda ◽  
Günes Parlakgul ◽  
Erika Cagampan ◽  
Nina Min ◽  
...  
2014 ◽  
Vol 122 (03) ◽  
Author(s):  
A Chatzigeorgiou ◽  
R Garcia-Martin ◽  
KJ Chung ◽  
I Alexaki ◽  
A Klotzsche-von Ameln ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dasol Kim ◽  
Hui-Yun Hwang ◽  
Eun Sun Ji ◽  
Jin Young Kim ◽  
Jong Shin Yoo ◽  
...  

AbstractDisorders of autophagy, a key regulator of cellular homeostasis, cause a number of human diseases. Due to the role of autophagy in metabolic dysregulation, there is a need to identify autophagy regulators as therapeutic targets. To address this need, we conducted an autophagy phenotype-based screen and identified the natural compound kaempferide (Kaem) as an autophagy enhancer. Kaem promoted autophagy through translocation of transcription factor EB (TFEB) without MTOR perturbation, suggesting it is safe for administration. Moreover, Kaem accelerated lipid droplet degradation in a lysosomal activity-dependent manner in vitro and ameliorated metabolic dysregulation in a diet-induced obesity mouse model. To elucidate the mechanism underlying Kaem’s biological activity, the target protein was identified via combined drug affinity responsive target stability and LC–MS/MS analyses. Kaem directly interacted with the mitochondrial elongation factor TUFM, and TUFM absence reversed Kaem-induced autophagy and lipid degradation. Kaem also induced mitochondrial reactive oxygen species (mtROS) to sequentially promote lysosomal Ca2+ efflux, TFEB translocation and autophagy induction, suggesting a role of TUFM in mtROS regulation. Collectively, these results demonstrate that Kaem is a potential therapeutic candidate/chemical tool for treating metabolic dysregulation and reveal a role for TUFM in autophagy for metabolic regulation with lipid overload.


2021 ◽  
pp. 1-14
Author(s):  
Pan Liu ◽  
Qian Yang ◽  
Ning Yu ◽  
Yan Cao ◽  
Xue Wang ◽  
...  

Background: Alzheimer’s disease (AD) is one of the most challenging diseases causing an increasing burden worldwide. Although the neuropathologic diagnosis of AD has been established for many years, the metabolic changes in neuropathologic diagnosed AD samples have not been fully investigated. Objective: To elucidate the potential metabolism dysregulation in the postmortem human brain samples assessed by AD related pathological examination. Methods: We performed untargeted and targeted metabolomics in 44 postmortem human brain tissues. The metabolic differences in the hippocampus between AD group and control (NC) group were compared. Results: The results show that a pervasive metabolic dysregulation including phenylalanine metabolism, valine, leucine, and isoleucine biosynthesis, biotin metabolism, and purine metabolism are associated with AD pathology. Targeted metabolomics reveal that phenylalanine, phenylpyruvic acid, and N-acetyl-L-phenylalanine are upregulated in AD samples. In addition, the enzyme IL-4I1 catalyzing transformation from phenylalanine to phenylpyruvic acid is also upregulated in AD samples. Conclusion: There is a pervasive metabolic dysregulation in hippocampus with AD-related pathological changes. Our study suggests that the dysregulation of phenylalanine metabolism in hippocampus may be an important pathogenesis for AD pathology formation.


Cartilage ◽  
2021 ◽  
pp. 194760352110267
Author(s):  
E.M. van Helvoort ◽  
H.M. de Visser ◽  
F.P.J.G. Lafeber ◽  
K. Coeleveld ◽  
S. Versteeg ◽  
...  

Objective Ideally, disease-modifying osteoarthritis (OA) drugs (DMOAD) should combine chondroprotective, anti-inflammatory, and analgesic effects in a single molecule. A fusion protein of interleukin-4 (IL-4) and IL-10 (IL4-10 FP) possesses these combined effects. In this study, the DMOAD activity of rat IL4-10 FP (rIL4-10 FP) was tested in a rat model of surgically induced OA under metabolic dysregulation. Design rIL4-10 FP was produced with HEK293F cells. Bioactivity of purified rIL4-10 FP was determined in a whole blood assay. Male Wistar rats ( n = 20) were fed a high-fat diet (HFD) to induce metabolic dysregulation. After 12 weeks, OA was induced according to the Groove model. Two weeks after OA induction, rats were randomly divided into 2 groups and treated with 10 weekly, intra-articular injections of either rIL4-10 FP ( n = 10) or phosphate buffered saline (PBS; n = 10). Possible antibody formation was evaluated using ELISA, cartilage degeneration and synovial inflammation were evaluated by histology and mechanical allodynia was evaluated using the von Frey test. Results Intra-articular injections with rIL4-10 FP significantly reduced cartilage degeneration ( P = 0.042) and decreased mechanical allodynia ( P < 0.001) compared with PBS. Only mild synovial inflammation was found (nonsignificant), limiting detection of putative anti-inflammatory effects. Multiple injections of rIL4-10 FP did not induce antibodies against rIL4-10 FP. Conclusion rIL4-10 FP showed chondroprotective and analgesic activity in a rat OA model with moderate cartilage damage, mild synovial inflammation, and pain. Future studies will need to address whether less frequent intra-articular injections, for example, with formulations with increased residence time, would also lead to DMOAD activity.


2021 ◽  
pp. 204589402110407
Author(s):  
Andrew J Sweatt ◽  
Raju Reddy ◽  
Farbod Rahaghi ◽  
Nadine Al-Naamani

In this conference paper, we review the 2020 American Thoracic Society (ATS) International Conference session titled, “What’s New in Pulmonary Hypertension Clinical Research: Lessons from the Best Abstracts”. This virtual mini-symposium took place on October 21, 2020, in lieu of the annual in-person ATS International Conference which was cancelled due to the COVID-19 pandemic. Seven clinical research abstracts were selected for presentation in the session, which encompassed five major themes: (1) standardizing diagnosis and management of pulmonary hypertension, (2) improving risk assessment in pulmonary arterial hypertension, (3) evaluating biomarkers of disease activity, (4) understanding metabolic dysregulation across the spectrum of pulmonary hypertension, and (5) advancing knowledge in chronic thromboembolic pulmonary hypertension. Focusing on these five thematic contexts we review the current state of knowledge, summarize presented research abstracts, appraise their significance and limitations, and then discuss relevant future directions in pulmonary hypertension clinical research.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 499
Author(s):  
Kalpana D. Acharya ◽  
Hye L. Noh ◽  
Madeline E. Graham ◽  
Sujin Suk ◽  
Randall H. Friedline ◽  
...  

A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women.


Author(s):  
Richard Radun ◽  
Michael Trauner

AbstractNonalcoholic fatty liver disease (NAFLD) has become the most prevalent cause of liver disease, increasingly contributing to the burden of liver transplantation. In search for effective treatments, novel strategies addressing metabolic dysregulation, inflammation, and fibrosis are continuously emerging. Disturbed bile acid (BA) homeostasis and microcholestasis via hepatocellular retention of potentially toxic BAs may be an underappreciated factor in the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) as its progressive variant. In addition to their detergent properties, BAs act as signaling molecules regulating cellular homeostasis through interaction with BA receptors such as the Farnesoid X receptor (FXR). Apart from being a key regulator of BA metabolism and enterohepatic circulation, FXR regulates metabolic homeostasis and has immune-modulatory effects, making it an attractive therapeutic target in NAFLD/NASH. In this review, the molecular basis and therapeutic potential of targeting FXR with a specific focus on restoring BA and metabolic homeostasis in NASH is summarized.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 93
Author(s):  
Mateusz Lejawa ◽  
Kamila Osadnik ◽  
Tadeusz Osadnik ◽  
Natalia Pawlas

Obesity is a significant factor related to metabolic disturbances that can lead to metabolic syndrome (MetS). Metabolic dysregulation causes oxidative stress, which affects telomere structure. The current study aimed to evaluate the relationships between telomere length, oxidative stress and the metabolically healthy and unhealthy phenotypes in healthy young men. Ninety-eight participants were included in the study (49 healthy slim and 49 obese patients). Study participants were divided into three subgroups according to body mass index and metabolic health. Selected oxidative stress markers were measured in serum. Relative telomere length (rTL) was measured using quantitative polymerase chain reaction. The analysis showed associations between laboratory markers, oxidative stress markers and rTL in metabolically healthy and unhealthy participants. Total oxidation status (TOS), total antioxidant capacity (TAC) and rTL were significantly connected with metabolically unhealthy obesity. TAC was associated with metabolically healthy obesity. Telomeres shorten in patients with metabolic dysregulation related to oxidative stress and obesity linked to MetS. Further studies among young metabolically healthy and unhealthy individuals are needed to determine the pathways related to metabolic disturbances that cause oxidative stress that leads to MetS.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Hang Xing ◽  
Guangbin Shi ◽  
Yuhong Liu ◽  
Frank W Sellke ◽  
Jun Feng

Introduction: Endothelial dysfunction plays a key role in the pathogenesis of diabetic vascular disease, which predisposes to ischemic cardiovascular events. Small conductance calcium-activated-potassium (SK) channels are largely responsible for coronary arteriolar relaxation mediated by endothelium-dependent hyperpolarizing factors. Diabetic inactivation/inhibition of endothelial SK channels contributes to endothelial dysfunction. Endothelial dysfunction during diabetes (DM) is also associated with increases in metabolites NADH, and PKC. The pyridine nucleotide NADH has been recently found to inactivate endothelial SK channels. The overexpressed and activated PKC has been shown to play an important role in diabetes-induced endothelial dysfunction. However, it is undefined if PKC is involved in the metabolite NADH dysregulation of endothelial SK channels. Hypothesis: We hypothesized that PKC in a signaling cascade whereby NADH dysregulates endothelial SK channels. Methods: SK channels currents of human coronary artery endothelial cells were measured by whole cell patch clamp method in the presence or absence of NADH, and/or PKC activator PMA, PKC inhibitors or endothelial PKC α /PKCβ knock-down by using short interfering RNA. Results: NADH (30-300μM, n=7-9) or PKC activator PMA (30-300μM, n=6-12) reduced endothelial SK current density (p<0.05 vs. control (n=15), Fig. A-D), whereas the selective PKC α inhibitor LY333531 (50nM, n=12) significantly reversed the NADH-induced SK channel inhibition (p>0.05 vs. control (n=15), Fig. E). PKC α knock-down failed to affect NADH (n=13) and PMA (n=10) inhibition of endothelial SK currents (Fig. F). In contrast, PKCβ knock-down significantly prevented NADH (n=12) and PMA (n=6)-induced SK inhibition (p>0.05, vs. control, Fig. G). Conclusions: The metabolite NADH dysregulation of endothelial SK channels was via PKCβ activation.


Sign in / Sign up

Export Citation Format

Share Document