scholarly journals Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases

2020 ◽  
Vol 12 (529) ◽  
pp. eaaw6143 ◽  
Author(s):  
Lingxin Zhu ◽  
Yi Tang ◽  
Xiao-Yan Li ◽  
Evan T. Keller ◽  
Jingwen Yang ◽  
...  

Osteoclasts actively remodel both the mineral and proteinaceous components of bone during normal growth and development as well as pathologic states ranging from osteoporosis to bone metastasis. The cysteine proteinase cathepsin K confers osteoclasts with potent type I collagenolytic activity; however, cathepsin K–null mice, as well as cathepsin K–mutant humans, continue to remodel bone and degrade collagen by as-yet-undefined effectors. Here, we identify a cathepsin K–independent collagenolytic system in osteoclasts that is composed of a functionally redundant network of the secreted matrix metalloproteinase MMP9 and the membrane-anchored matrix metalloproteinase MMP14. Unexpectedly, whereas deleting either of the proteinases individually leaves bone resorption intact, dual targeting of Mmp9 and Mmp14 inhibited the resorptive activity of mouse osteoclasts in vitro and in vivo and human osteoclasts in vitro. In vivo, Mmp9/Mmp14 conditional double-knockout mice exhibited marked increases in bone density and displayed a highly protected status against either parathyroid hormone– or ovariectomy-induced pathologic bone loss. Together, these studies characterize a collagenolytic system operative in mouse and human osteoclasts and identify the MMP9/MMP14 axis as a potential target for therapeutic interventions for bone-wasting disease states.

2001 ◽  
Vol 204 (3) ◽  
pp. 443-455
Author(s):  
C. Faucheux ◽  
S. Nesbitt ◽  
M. Horton ◽  
J. Price

Deer antlers are a rare example of mammalian epimorphic regeneration. Each year, the antlers re-grow by a modified endochondral ossification process that involves extensive remodelling of cartilage by osteoclasts. This study identified regenerating antler cartilage as a site of osteoclastogenesis in vivo. An in vitro model was then developed to study antler osteoclast differentiation. Cultured as a high-density micromass, cells from non-mineralised cartilage supported the differentiation of large numbers of osteoclast-like multinucleated cells (MNCs) in the absence of factors normally required for osteoclastogenesis. After 48 h of culture, tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells (osteoclast precursors) were visible, and by day 14 a large number of TRAP-positive MNCs had formed (783+/−200 per well, mean +/− s.e.m., N=4). Reverse transcriptase/polymerase chain reaction (RT-PCR) showed that receptor activator of NF κ B ligand (RANKL) and macrophage colony stimulating factor (M-CSF) mRNAs were expressed in micromass cultures. Antler MNCs have the phenotype of osteoclasts from mammalian bone; they expressed TRAP, vitronectin and calcitonin receptors and, when cultured on dentine, formed F-actin rings and large resorption pits. When cultured on glass, antler MNCs appeared to digest the matrix of the micromass and endocytose type I collagen. Matrix metalloproteinase-9 (MMP-9) may play a role in the resorption of this non-mineralised matrix since it is highly expressed in 100 % of MNCs. In contrast, cathepsin K, another enzyme expressed in osteoclasts from bone, is only highly expressed in resorbing MNCs cultured on dentine. This study identifies the deer antler as a valuable model that can be used to study the differentiation and function of osteoclasts in adult regenerating mineralised tissues.


Bone ◽  
2007 ◽  
Vol 40 (1) ◽  
pp. 122-131 ◽  
Author(s):  
S. Kumar ◽  
L. Dare ◽  
J.A. Vasko-Moser ◽  
I.E. James ◽  
S.M. Blake ◽  
...  

1997 ◽  
Vol 12 (9) ◽  
pp. 1396-1406 ◽  
Author(s):  
Bartholomew J. Votta ◽  
Mark A. Levy ◽  
Alison Badger ◽  
Jeremy Bradbeer ◽  
Robert A. Dodds ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6368
Author(s):  
Anaïs M. J. Møller ◽  
Jean-Marie Delaissé ◽  
Jacob B. Olesen ◽  
Luisa M. Canto ◽  
Silvia R. Rogatto ◽  
...  

It is well established that multinucleation is central for osteoclastic bone resorption. However, our knowledge on the mechanisms regulating how many nuclei an osteoclast will have is limited. The objective of this study was to investigate donor-related variations in the fusion potential of in vitro-generated osteoclasts. Therefore, CD14+ monocytes were isolated from 49 healthy female donors. Donor demographics were compared to the in vivo bone biomarker levels and their monocytes’ ability to differentiate into osteoclasts, showing that: (1) C-terminal telopeptide of type I collagen (CTX) and procollagen type I N-terminal propeptide (PINP) levels increase with age, (2) the number of nuclei per osteoclast in vitro increases with age, and (3) there is a positive correlation between the number of nuclei per osteoclast in vitro and CTX levels in vivo. Furthermore, the expression levels of the gene encoding dendritic cell-specific transmembrane protein (DCSTAMP) of osteoclasts in vitro correlated positively with the number of nuclei per osteoclast, CTX levels in vivo, and donor age. Our results furthermore suggest that these changes in gene expression may be mediated through age-related changes in DNA methylation levels. We conclude that both intrinsic factors and age-induced increase in fusion potential of osteoclasts could be contributing factors for the enhanced bone resorption in vivo, possibly caused by increased expression levels of DCSTAMP.


Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. 5048-5056 ◽  
Author(s):  
Benoit Detry ◽  
Charlotte Erpicum ◽  
Jenny Paupert ◽  
Silvia Blacher ◽  
Catherine Maillard ◽  
...  

Abstract Lymphatic dysfunctions are associated with several human diseases, including lymphedema and metastatic spread of cancer. Although it is well recognized that lymphatic capillaries attach directly to interstitial matrix mainly composed of fibrillar type I collagen, the interactions occurring between lymphatics and their surrounding matrix have been overlooked. In this study, we demonstrate how matrix metalloproteinase (MMP)–2 drives lymphatic morphogenesis through Mmp2-gene ablation in mice, mmp2 knockdown in zebrafish and in 3D-culture systems, and through MMP2 inhibition. In all models used in vivo (3 murine models and thoracic duct development in zebrafish) and in vitro (lymphatic ring and spheroid assays), MMP2 blockage or down-regulation leads to reduced lymphangiogenesis or altered vessel branching. Our data show that lymphatic endothelial cell (LEC) migration through collagen fibers is affected by physical matrix constraints (matrix composition, density, and cross-linking). Transmission electron microscopy and confocal reflection microscopy using DQ-collagen highlight the contribution of MMP2 to mesenchymal-like migration of LECs associated with collagen fiber remodeling. Our findings provide new mechanistic insight into how LECs negotiate an interstitial type I collagen barrier and reveal an unexpected MMP2-driven collagenolytic pathway for lymphatic vessel formation and morphogenesis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shintaro Mukohara ◽  
Yutaka Mifune ◽  
Atsuyuki Inui ◽  
Hanako Nishimoto ◽  
Takashi Kurosawa ◽  
...  

Abstract Background Dehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes. This study aimed to investigate the in vitro and in vivo protective effects of DHEA against high glucose-induced oxidative stress in tenocytes and tendons. Methods Tenocytes from normal Sprague-Dawley rats were cultured in low-glucose (LG) or high-glucose (HG) medium with or without DHEA. The experimental groups were: control group (LG without DHEA), LG with DHEA, HG without DHEA, and HG with DHEA. Reactive oxygen species (ROS) production, apoptosis, and messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, and interleukin-6 (IL-6) were determined. Further, diabetic rats were divided into a control group and a DHEA-injected group (DHEA group). NOX1 and NOX4 protein expression and mRNA expression of NOX1, NOX4, IL-6, matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined. Results In rat tenocytes, DHEA decreased the expression of NOX1 and IL-6, ROS accumulation, and apoptotic cells. In the diabetic rat Achilles tendon, NOX1 protein expression and mRNA expression of NOX1, IL-6, MMP-2, TIMP-2, and type III collagen were significantly lower while type I collagen expression was significantly higher in the DHEA group than in the control group. Conclusions DHEA showed antioxidant and anti-inflammatory effects both in vitro and in vivo. Moreover, DHEA improved tendon matrix synthesis and turnover, which are affected by hyperglycemic conditions. DHEA is a potential preventive drug for diabetic tendinopathy.


2021 ◽  
Vol 22 (4) ◽  
pp. 1810
Author(s):  
Ineke D.C. Jansen ◽  
Socrates E. Papapoulos ◽  
Nathalie Bravenboer ◽  
Teun J. de Vries ◽  
Natasha M. Appelman-Dijkstra

Pycnodysostosis, a rare autosomal recessive skeletal dysplasia, is caused by a deficiency of cathepsin K. Patients have impaired bone resorption in the presence of normal or increased numbers of multinucleated, but dysfunctional, osteoclasts. Cathepsin K degrades collagen type I and generates N-telopeptide (NTX) and the C-telopeptide (CTX) that can be quantified. Levels of these telopeptides are increased in lactating women and are associated with increased bone resorption. Nothing is known about the consequences of cathepsin K deficiency in lactating women. Here we present for the first time normalized blood and CTX measurements in a patient with pycnodysostosis, exclusively related to the lactation period. In vitro studies using osteoclasts derived from blood monocytes during lactation and after weaning further show consistent bone resorption before and after lactation. Increased expression of cathepsins L and S in osteoclasts derived from the lactating patient suggests that other proteinases could compensate for the lack of cathepsin K during the lactation period of pycnodysostosis patients.


1998 ◽  
Vol 72 (7) ◽  
pp. 5654-5660 ◽  
Author(s):  
Edward M. Schwarz ◽  
Cornel Badorff ◽  
Timothy S. Hiura ◽  
Rainer Wessely ◽  
Annette Badorff ◽  
...  

ABSTRACT Apoptosis is a central host defense mechanism to eliminate virus-infected cells. Activation of NF-κB suppresses apoptosis following some types of stimulation in vitro. To test the physiological importance of this pathway in vivo, we studied murine encephalomyocarditis virus (EMCV) infection in mice and cell lines defective in NF-κB1 (p50) signaling. As previously reported, we find that all p50 knockout (p50 −/−) mice survive an EMCV infection that readily kills normal mice. By introducing the p50 mutation into interferon (IFN) type I receptor knockout (IFNRI −/−) mice, we find that this resistance is not mediated by IFN-β as previously thought. While no IFNRI −/− mice survive, the double-knockout mice survive 60% of the time. The survival is tightly linked to the animals’ ability to clear the virus from the heart in vivo. Using murine embryonic fibroblasts (MEF) derived from wild-type, p50 −/−, and p65 −/− embryos, we found that NF-κB is not required for the replication cycle of EMCV. However, during these experiments we observed that p50 −/− and p65 −/− MEF infected with EMCV undergo enhanced, premature cytotoxicity. Upon examination of this cell death, we found that EMCV infection induced both plasma membrane and nuclear changes typical of apoptosis in all cell lines. These apoptotic processes occurred in an accelerated and pronounced way in the NF-κB-defective cells, as soon as 6 h after infection, when virus is beginning to be released. Previously, only the RelA (p65) subunit of NF-κB has been shown to play a role in suppressing apoptosis. In our studies, we find that p50 is equally important in suppressing apoptosis during EMCV infection. Additionally, we show that suppression of apoptosis by NF-κB1 is required for EMCV virulence in vivo. The attenuation in p50 −/− mice can be explained by rapid apoptosis of infected cells which allows host phagocytes to clear infected cells before the viral burst leading to a reduction of the viral burden and survival of the mice.


2021 ◽  
Author(s):  
Shintaro Mukohara ◽  
Yutaka Mifune ◽  
Atsuyuki Inui ◽  
Hanako Nishimoto ◽  
Takashi Kurosawa ◽  
...  

Abstract BackgroundDehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes. The aim of this study was to investigate the in vitro and in vivo protective effects of DHEA against high glucose-induced oxidative stress in tenocytes and tendons. Methods In an in vitro study, tenocytes from normal Sprague-Dawley rats were cultured in low-glucose (LG) or high-glucose (HG) medium with or without DHEA. The experimental groups were: control group (LG without DHEA), LG with DHEA, HG without DHEA, and HG with DHEA. Reactive oxygen species (ROS) production, apoptosis, and messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, and interleukin-6 (IL-6) were determined. In the in vivo study, diabetic rats were divided into a control group and a DHEA-injected group (DHEA group). NOX1 and NOX4 protein expression and mRNA expression of NOX1, NOX4, IL-6, matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined. Results In rat tenocytes, DHEA decreased the expression of NOX1 and IL-6, ROS accumulation, and apoptotic cells. In the diabetic rat Achilles tendon, NOX1 protein expression and mRNA expression of NOX1, IL-6, MMP-2, TIMP-2, and type III collagen were significantly lower, while type I collagen expression was significantly lower in the DHEA group.Conclusions DHEA showed antioxidant and anti-inflammatory effects both in vitro and in vivo. Moreover, DHEA improved tendon matrix synthesis and turnover which are affected by hyperglycemic conditions. DHEA could be a preventive drug for the diabetic tendinopathy.


2020 ◽  
Vol 295 (50) ◽  
pp. 17060-17070
Author(s):  
Donghang Cheng ◽  
Guozhen Gao ◽  
Alessandra Di Lorenzo ◽  
Sandrine Jayne ◽  
Michael O. Hottiger ◽  
...  

CARM1 is a protein arginine methyltransferase (PRMT) that acts as a coactivator in a number of transcriptional programs. CARM1 orchestrates this coactivator activity in part by depositing the H3R17me2a histone mark in the vicinity of gene promoters that it regulates. However, the gross levels of H3R17me2a in CARM1 KO mice did not significantly decrease, indicating that other PRMT(s) may compensate for this loss. We thus performed a screen of type I PRMTs, which revealed that PRMT6 can also deposit the H3R17me2a mark in vitro. CARM1 knockout mice are perinatally lethal and display a reduced fetal size, whereas PRMT6 null mice are viable, which permits the generation of double knockouts. Embryos that are null for both CARM1 and PRMT6 are noticeably smaller than CARM1 null embryos, providing in vivo evidence of redundancy. Mouse embryonic fibroblasts (MEFs) from the double knockout embryos display an absence of the H3R17me2a mark during mitosis and increased signs of DNA damage. Moreover, using the combination of CARM1 and PRMT6 inhibitors suppresses the cell proliferation of WT MEFs, suggesting a synergistic effect between CARM1 and PRMT6 inhibitions. These studies provide direct evidence that PRMT6 also deposits the H3R17me2a mark and acts redundantly with CARM1.


Sign in / Sign up

Export Citation Format

Share Document