scholarly journals Enhanced SARS-CoV-2 neutralization by dimeric IgA

2020 ◽  
pp. eabf1555 ◽  
Author(s):  
Zijun Wang ◽  
Julio C. C. Lorenzi ◽  
Frauke Muecksch ◽  
Shlomo Finkin ◽  
Charlotte Viant ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), primarily infects cells at mucosal surfaces. Serum neutralizing antibody responses are variable and generally low in individuals that suffer mild forms of COVID-19. Although potent IgG antibodies can neutralize the virus, less is known about secretory antibodies such as IgA that might impact the initial viral spread and transmissibility from the mucosa. Here we characterize the IgA response to SARS-CoV-2 in a cohort of 149 convalescent individuals following diagnosis with COVID-19. IgA responses in plasma generally correlated with IgG responses. Further, clones of IgM-, IgG-, and IgA-producing B cells were derived from common progenitor cells. Plasma IgA monomers specific to SARS-CoV-2 proteins were demonstrated to be two-fold less potent than IgG equivalents. However, IgA dimers, the primary form of antibody in the nasopharynx, were on average fifteen times more potent than IgA monomers against the same target. Thus, dimeric IgA responses may be particularly valuable for protection against SARS-CoV-2 and for vaccine efficacy.

Author(s):  
Zijun Wang ◽  
Julio C. C. Lorenzi ◽  
Frauke Muecksch ◽  
Shlomo Finkin ◽  
Charlotte Viant ◽  
...  

AbstractSARS-CoV-2 primarily infects cells at mucosal surfaces. Serum neutralizing antibody responses are variable and generally low in individuals that suffer mild forms of the illness. Although potent IgG antibodies can neutralize the virus, less is known about secretory antibodies such as IgA that might impact the initial viral spread and transmissibility from the mucosa. Here we characterize the IgA response to SARS-CoV-2 in a cohort of 149 individuals. IgA responses in plasma generally correlate with IgG responses and clones of IgM, IgG and IgA producing B cells that are derived from common progenitors are evident. Plasma IgA monomers are 2-fold less potent than IgG equivalents. However, IgA dimers, the primary form in the nasopharynx, are on average 15 times more potent than IgA monomers. Thus, secretory IgA responses may be particularly valuable for protection against SARS-CoV-2 and for vaccine efficacy.


2021 ◽  
Author(s):  
Jira Chansaenroj ◽  
Ritthideach Yorsaeng ◽  
Nasamon Wanlapakorn ◽  
Chintana Chirathaworn ◽  
Natthinee Sudhinaraset ◽  
...  

Abstract Understanding antibody responses after natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can guide the coronavirus disease 2019 (COVID-19) vaccine schedule. This study aimed to assess the dynamics of SARS-CoV-2 antibodies, including anti-spike protein 1 (S1) immunoglobulin (Ig)G, anti-receptor-binding domain (RBD) total Ig, anti-S1 IgA, and neutralizing antibody against wild-type SARS-CoV-2 in a cohort of patients who were previously infected with SARS-CoV-2. Between March and May 2020, 531 individuals with virologically confirmed cases of SARS-CoV-2 infection were enrolled in our immunological study. The neutralizing titers against SARS-CoV-2 were detected in 95.2%, 86.7%, 85.0%, and 85.4% of recovered COVID-19 patients at 3, 6, 9, and 12 months after symptom onset, respectively. The seropositivity rate of anti-S1 IgG, anti-RBD total Ig, anti-S1 IgA, and neutralizing titers remained at 68.6%, 89.6%, 77.1%, and 85.4%, respectively, at 12 months after symptom onset. The half-life of neutralizing titers was estimated at 100.7 days (95% confidence interval = 44.5 – 327.4 days, R2 = 0.106). These results support that the decline in serum antibody levels over time depends on the symptom severity, and the individuals with high IgG antibody titers experienced a significantly longer persistence of SARS-CoV-2-specific antibody responses than those with lower titers.


2004 ◽  
Vol 53 (5) ◽  
pp. 435-438 ◽  
Author(s):  
Weijun Chen ◽  
Zuyuan Xu ◽  
Jingsong Mu ◽  
Ling Yang ◽  
Haixue Gan ◽  
...  

To understand the time-course of viraemia and antibody responses to severe acute respiratory syndrome-associated coronavirus (SARS-CoV), RT-PCR and ELISA were used to assay 376 blood samples from 135 SARS patients at various stages of the illness, including samples from patients who were in their early convalescent phase. The results showed that IgM antibodies decreased and became undetectable 11 weeks into the recovery phase. IgG antibodies, however, remained detectable for a period beyond 11 weeks and were found in 100 % of patients in the early convalescent phase. SARS-CoV viraemia mainly appeared 1 week after the onset of illness and then decreased over a period of 1 month, becoming undetectable in the blood samples of the convalescent patients. At the peak of viraemia, viral RNA was detectable in 75 % of blood samples from patients who were clinically diagnosed with SARS 1 or 2 weeks before the test.


Author(s):  
Nanda Kishore Routhu ◽  
Sailaja Gangadhara ◽  
Narayanaiah Cheedarla ◽  
Ayalnesh Shiferaw ◽  
Sheikh Abdul Rahman ◽  
...  

AbstractThere is a great need for the development of vaccines for preventing SARS-CoV-2 infection and mitigating the COVID-19 pandemic. Here, we developed two modified vaccinia Ankara (MVA) based vaccines which express either a membrane anchored full-length spike protein (MVA/S) stabilized in a prefusion state or the S1 region of the spike (MVA/S1) which forms trimers and is secreted. Both immunogens contained the receptor-binding domain (RBD) which is a known target of antibody-mediated neutralization. Following immunizations with MVA/S or MVA/S1, both spike protein recombinants induced strong IgG antibodies to purified full-length SARS-CoV-2 spike protein. The MVA/S induced a robust antibody response to purified RBD, S1 and S2 whereas MVA/S1 induced an antibody response to the S1 region outside of the RBD region. Both vaccines induced an antibody response in the lung and that was associated with induction of bronchus-associated lymphoid tissue. MVA/S but not MVA/S1 vaccinated mice generated robust neutralizing antibody responses against SARS-CoV-2 that strongly correlated with RBD antibody binding titers. Mechanistically, S1 binding to ACE-2 was strong but reduced following prolonged pre-incubation at room temperature suggesting confirmation changes in RBD with time. These results demonstrate MVA/S is a potential vaccine candidate against SARS-CoV-2 infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas W. McDade ◽  
Alexis R. Demonbreun ◽  
Amelia Sancilio ◽  
Brian Mustanski ◽  
Richard T. D’Aquila ◽  
...  

AbstractTwo-dose messenger RNA vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective in preventing symptomatic COVID-19 infection. However, the durability of protection is not known, nor is the effectiveness against emerging viral variants. Additionally, vaccine responses may differ based on prior SARS-CoV-2 exposure history. To investigate protection against SARS-CoV-2 variants we measured binding and neutralizing antibody responses following both vaccine doses. We document significant declines in antibody levels three months post-vaccination, and reduced neutralization of emerging variants, highlighting the need to identify correlates of clinical protection to inform the timing of and indications for booster vaccination.


2005 ◽  
Vol 79 (20) ◽  
pp. 13186-13189 ◽  
Author(s):  
James E. Cummins ◽  
Roumiana S. Boneva ◽  
William M. Switzer ◽  
Logan L. Christensen ◽  
Paul Sandstrom ◽  
...  

ABSTRACT Simian foamy virus (SFV) infection and the subsequent immune response are not well characterized. Blood plasma, saliva, and urine were obtained from four humans and nine chimpanzees persistently infected with chimpanzee-type SFV for an unknown length of time. SFV-specific immunoglobulin G (IgG) antibodies, but not IgA antibodies, against the Gag and Bet proteins were detected, by Western blotting, in all sample types from infected humans and chimpanzees. Overall, chimpanzee samples had higher anti-SFV IgG titers than humans. These results provide a first comparative evaluation of SFV-specific host mucosal humoral immunity in infected humans and chimpanzees that is characterized by a predominant IgG response and a virtually absent IgA response.


Science ◽  
2020 ◽  
Vol 370 (6521) ◽  
pp. 1227-1230 ◽  
Author(s):  
Ania Wajnberg ◽  
Fatima Amanat ◽  
Adolfo Firpo ◽  
Deena R. Altman ◽  
Mark J. Bailey ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic with millions infected and more than 1 million fatalities. Questions regarding the robustness, functionality, and longevity of the antibody response to the virus remain unanswered. Here, on the basis of a dataset of 30,082 individuals screened at Mount Sinai Health System in New York City, we report that the vast majority of infected individuals with mild-to-moderate COVID-19 experience robust immunoglobulin G antibody responses against the viral spike protein. We also show that titers are relatively stable for at least a period of about 5 months and that anti-spike binding titers significantly correlate with neutralization of authentic SARS-CoV-2. Our data suggest that more than 90% of seroconverters make detectable neutralizing antibody responses. These titers remain relatively stable for several months after infection.


2020 ◽  
pp. eabd2223 ◽  
Author(s):  
Delphine Sterlin ◽  
Alexis Mathian ◽  
Makoto Miyara ◽  
Audrey Mohr ◽  
François Anna ◽  
...  

Humoral immune responses are typically characterized by primary IgM antibody responses followed by secondary antibody responses associated with immune memory and comprised of of IgG, IgA and IgE. Here we measured acute humoral responses to SARS-CoV-2, including the frequency of antibody-secreting cells and the presence of SARS-CoV-2-specific neutralizing antibodies in the serum, saliva and broncho-alveolar fluid of 159 patients with COVID-19. Early SARS-CoV-2-specific humoral responses were dominated by IgA antibodies. Peripheral expansion of IgA plasmablasts with mucosal-homing potential was detected shortly after the onset of symptoms and peaked during the third week of the disease. The virus-specific antibody responses included IgG, IgM and IgA, but IgA contributed to virus neutralization to a greater extent compared with IgG. Specific IgA serum concentrations decreased notably one month after the onset of symptoms, but neutralizing IgA remained detectable in saliva for a longer time (days 49 to 73 post symptoms). These results represent a critical observation given the emerging information as to the types of antibodies associated with optimal protection against re-infection, and whether vaccine regimens should consider targeting a potent but potentially short-lived IgA response.


2020 ◽  
Vol 5 (52) ◽  
pp. eabe5511
Author(s):  
Baweleta Isho ◽  
Kento T. Abe ◽  
Michelle Zuo ◽  
Alainna J. Jamal ◽  
Bhavisha Rathod ◽  
...  

Although the antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been extensively studied in blood, relatively little is known about the antibody response in saliva and its relationship to systemic antibody levels. Here, we profiled by enzyme-linked immunosorbent assays (ELISAs) immunoglobulin G (IgG), IgA, and IgM responses to the SARS-CoV-2 spike protein (full-length trimer) and its receptor binding domain (RBD) in serum and saliva of acute and convalescent patients with laboratory-diagnosed coronavirus disease 2019 (COVID-19) ranging from 3 to 115 days postsymptom onset (PSO), compared with negative controls. Anti–SARS-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16 to 30 days PSO. Longitudinal analysis revealed that anti–SARS-CoV-2 IgA and IgM antibodies rapidly decayed, whereas IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. Last, IgG, IgM, and, to a lesser extent, IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that serum and saliva IgG antibodies to SARS-CoV-2 are maintained in most of the patients with COVID-19 for at least 3 months PSO. IgG responses in saliva may serve as a surrogate measure of systemic immunity to SARS-CoV-2 based on their correlation with serum IgG responses.


2021 ◽  
Author(s):  
Venkata-Viswanadh Edara ◽  
Kelly E Manning ◽  
Madison Ellis ◽  
Lilin Lai ◽  
Kathryn M Moore ◽  
...  

The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naive vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.


Sign in / Sign up

Export Citation Format

Share Document