scholarly journals Listeria monocytogenes: cell biology of invasion and intracellular growth

2019 ◽  
pp. 851-863
Author(s):  
Javier Pizarro-Cerdá ◽  
Pascale Cossart
2006 ◽  
Vol 188 (2) ◽  
pp. 556-568 ◽  
Author(s):  
Biju Joseph ◽  
Karin Przybilla ◽  
Claudia Stühler ◽  
Kristina Schauer ◽  
Jörg Slaghuis ◽  
...  

ABSTRACT A successful transition of Listeria monocytogenes from the extracellular to the intracellular environment requires a precise adaptation response to conditions encountered in the host milieu. Although many key steps in the intracellular lifestyle of this gram-positive pathogen are well characterized, our knowledge about the factors required for cytosolic proliferation is still rather limited. We used DNA microarray and real-time reverse transcriptase PCR analyses to investigate the transcriptional profile of intracellular L. monocytogenes following epithelial cell infection. Approximately 19% of the genes were differentially expressed by at least 1.6-fold relative to their level of transcription when grown in brain heart infusion medium, including genes encoding transporter proteins essential for the uptake of carbon and nitrogen sources, factors involved in anabolic pathways, stress proteins, transcriptional regulators, and proteins of unknown function. To validate the biological relevance of the intracellular gene expression profile, a random mutant library of L. monocytogenes was constructed by insertion-duplication mutagenesis and screened for intracellular-growth-deficient strains. By interfacing the results of both approaches, we provide evidence that L. monocytogenes can use alternative carbon sources like phosphorylated glucose and glycerol and nitrogen sources like ethanolamine during replication in epithelial cells and that the pentose phosphate cycle, but not glycolysis, is the predominant pathway of sugar metabolism in the host environment. Additionally, we show that the synthesis of arginine, isoleucine, leucine, and valine, as well as a species-specific phosphoenolpyruvate-dependent phosphotransferase system, play a major role in the intracellular growth of L. monocytogenes.


Microbiology ◽  
2014 ◽  
Vol 160 (1) ◽  
pp. 142-148 ◽  
Author(s):  
Brian M. Forster ◽  
Alan Pavinski Bitar ◽  
Hélène Marquis

Mpl, a thermolysin-like metalloprotease, and PC-PLC, a phospholipase C, are synthesized as proenzymes by the intracellular bacterial pathogen Listeria monocytogenes. During intracellular growth, L. monocytogenes is temporarily confined in a membrane-bound vacuole whose acidification leads to Mpl autolysis and Mpl-mediated cleavage of the PC-PLC N-terminal propeptide. Mpl maturation also leads to the secretion of both Mpl and PC-PLC across the bacterial cell wall. Previously, we identified negatively charged and uncharged amino acid residues within the N terminus of the PC-PLC propeptide that influence the ability of Mpl to mediate the maturation of PC-PLC, suggesting that these residues promote the interaction of the PC-PLC propeptide with Mpl. In the present study, we identified a non-catalytic histidine residue (H226) that influences Mpl secretion across the cell wall and its ability to process PC-PLC. Our results suggest that a positive charge at position 226 is required for Mpl functions other than autolysis. Based on the charge requirement at this position, we hypothesize that this residue contributes to the interaction of Mpl with the PC-PLC propeptide.


2016 ◽  
Vol 198 (8) ◽  
pp. 1207-1217 ◽  
Author(s):  
Veronica Medrano Romero ◽  
Kazuya Morikawa

ABSTRACTThe alternative sigma factor σHhas two functions in Gram-positive bacteria: it regulates sporulation and the development of genetic competence.Listeria monocytogenesis a nonsporulating species in which competence has not yet been detected. Nevertheless, the main competence regulators and a series of orthologous genes that form the competence machinery are present in its genome; some of the competence genes play a role in optimal phagosomal escape. In this study, strains overexpressing σHand strains with a σHdeletion were used to elucidate the contribution of σHto the expression of the competence machinery genes inL. monocytogenes. Gene expression analysis showed that σHis, indeed, involved incomGandcomEregulation. Unexpectedly, we observed a unique regulation scheme in which σHand the transcription factor ComK were involved. Population-level analysis showed that even with the overexpression of both factors, only a fraction of the cells expressed the competence machinery genes. Although we could not detect competence, σHwas crucial for phagosomal escape, which implies that this alternative sigma factor has specifically evolved to regulate theL. monocytogenesintracellular life cycle.IMPORTANCEListeria monocytogenescan be an intracellular pathogen capable of causing serious infections in humans and animal species. Recently, the competence machinery genes were described as being necessary for optimal phagosomal escape, in which the transcription factor ComK plays an important role. On the other hand, our previous phylogenetic analysis suggested that the alternative sigma factor σHmight play a role in the regulation of competence genes. The present study shows that some of the competence genes belong to the σHregulon and, importantly, that σHis essential for intracellular growth, implying a unique physiological role of σHamongFirmicutes.


2011 ◽  
Vol 80 (1) ◽  
pp. 14-21 ◽  
Author(s):  
David Corbett ◽  
Jiahui Wang ◽  
Stephanie Schuler ◽  
Gloria Lopez-Castejon ◽  
Sarah Glenn ◽  
...  

ABSTRACTWe report here the identification and characterization of two zinc uptake systems, ZurAM and ZinABC, in the intracellular pathogenListeria monocytogenes. Transcription of both operons was zinc responsive and regulated by the zinc-sensing repressor Zur. Deletion of eitherzurAMorzinAhad no detectable effect on growth in defined media, but a doublezurAM zinAmutant was unable to grow in the absence of zinc supplementation. Deletion ofzinAhad no detectable effect on intracellular growth in HeLa epithelial cells. In contrast, growth of thezurAMmutant was significantly impaired in these cells, indicating the importance of the ZurAM system during intracellular growth. Notably, the deletion of bothzinAandzurAMseverely attenuated intracellular growth, with the double mutant being defective in actin-based motility and unable to spread from cell to cell. Deletion of eitherzurAMorzinAhad a significant effect on virulence in an oral mouse model, indicating that both zinc uptake systems are importantin vivoand establishing the importance of zinc acquisition during infection byL. monocytogenes. The presence of two zinc uptake systems may offer a mechanism by whichL. monocytogenescan respond to zinc deficiency within a variety of environments and during different stages of infection, with each system making distinct contributions under different stress conditions.


Infection ◽  
1988 ◽  
Vol 16 (S2) ◽  
pp. S145-S148 ◽  
Author(s):  
P. Berche ◽  
J. -L. Gaillard ◽  
S. Richard

2003 ◽  
Vol 71 (7) ◽  
pp. 4102-4111 ◽  
Author(s):  
Emma Eriksson ◽  
Lone Dons ◽  
Antonio Gigliotti Rothfuchs ◽  
Paraskevi Heldin ◽  
Hans Wigzell ◽  
...  

ABSTRACT CD44 has been implicated in immune and inflammatory processes. We have analyzed the role of CD44 in the outcome of Listeria monocytogenes infection in murine bone marrow-derived macrophages (BMM). Surprisingly, a dramatically decreased intracellular survival of L. monocytogenes was observed in CD44−/− BMM. CD44−/− heart or lung fibroblast cultures also showed reduced bacterial levels. Moreover, livers from CD44−/−-infected mice showed diminished levels of L. monocytogenes. In contrast, intracellular growth of Salmonella enterica serovar Typhimurium was the same in CD44−/− and control BMM. The CD44-mediated increased bacterial proliferation was not linked to altered BMM differentiation or to secretion of soluble factors. CD44 did not mediate listerial uptake, and it played no role in bacterial escape from the primary phagosome or formation of actin tails. Furthermore, CD44-enhanced listerial proliferation occurred in the absence of intracellular bacterial spreading. Interestingly, coincubation of BMM with hyaluronidase or anti-CD44 antibodies that selectively inhibit hyaluronan binding increased intracellular listerial proliferation. Treatment of cells with hyaluronan, in contrast, diminished listerial growth and induced proinflammatory transcript levels. We suggest that L. monocytogenes takes advantage of the CD44-mediated signaling to proliferate intracellularly, although binding of CD44 to certain ligands will inhibit such response.


2009 ◽  
Vol 191 (7) ◽  
pp. 2187-2196 ◽  
Author(s):  
Kristie Keeney ◽  
Lisa Colosi ◽  
Walter Weber ◽  
Mary O'Riordan

ABSTRACT The gram-positive bacterial pathogen Listeria monocytogenes has evolved mechanisms to rapidly replicate in the host cytosol, implying efficient utilization of host-derived nutrients. However, the contribution of host nutrient scavenging versus that of bacterial biosynthesis toward rapid intracellular growth remains unclear. Nutrients that contribute to growth of L. monocytogenes include branched-chain fatty acids (BCFAs), amino acids, and other metabolic intermediates generated from acyl-coenzyme A, which is synthesized using lipoylated metabolic enzyme complexes. To characterize which biosynthetic pathways support replication of L. monocytogenes inside the host cytosol, we impaired lipoate-dependent metabolism by disrupting two lipoate ligase genes that are responsible for bacterial protein lipoylation. Interrupting lipoate-dependent metabolism modestly impaired replication in rich broth medium but strongly inhibited growth in defined medium and host cells and impaired the generation of BCFAs. Addition of short BCFAs and amino acids restored growth of the A1A2-deficient (A1A2−) mutant in minimal medium, implying that lipoate-dependent metabolism generates amino acids and BCFAs. BCFAs alone rescued intracellular growth and spread in L2 fibroblasts of the A1A2− mutant. Lipoate-dependent metabolism was also required in vivo, as a wild-type strain robustly outcompeted the lipoylation-deficient mutant in a murine model of listeriosis. The results of this study suggest that lipoate-dependent metabolism contributes to both amino acid and BCFA biosynthesis and that BCFA biosynthesis is preferentially required for intracellular growth of L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document