The effect of isoniazid intake on ethionamide pharmacokinetics and target attainment in multidrug-resistant tuberculosis patients.

Author(s):  
Maxwell T. Chirehwa ◽  
Richard Court ◽  
Mariana de Kock ◽  
Lubbe Wiesner ◽  
Nihal de Vries ◽  
...  

Ethionamide is recommended as part of regimens to treat multidrug-resistant and rifampicin-resistant tuberculosis. The study was conducted to (i) describe the distribution of ethionamide minimum inhibitory concentrations (MICs), (ii) describe the pharmacokinetics of ethionamide, and (iii) determine the probability of attaining target AUC 0-24 /MIC values associated with suppression of resistant subpopulation and microbial kill. Participants received 15–20 mg/kg of ethionamide daily (in 500 or 750 mg doses), as part of a multidrug regimen. Pretreatment MICs of ethionamide for M. tuberculosis sputum isolates were determined using Sensititre MYCOTB MIC plates. Plasma concentrations of ethionamide (measured pre-dose and at 2, 4, 6, 8 and 10 hours post-dose) were available for 84 patients. A one-compartment disposition model including a liver compartment capturing hepatic extraction, best described ethionamide pharmacokinetics. Clearance and volume were allometrically scaled using fat-free mass. Isoniazid co-administration reduced ethionamide clearance by 31% resulting in a 44% increase in AUC 0-24 . The median (range) MIC (n=111) was 2.5 mg/L (<0.3 to >40 mg/L). Simulations showed increased daily doses of ethionamide (1 250 mg, 1 500 mg, and 1 750 mg for patients weighing ≤45 kg, 46-70 kg, and >70 kg, respectively) resulted in the probability of attaining a f AUC 0-24 /MIC ratio ≥ 42 in more than 90% of patients, only at the lowest MIC of 0.3 mg/L. The WHO recommended doses of ethionamide do not achieve target concentrations even for the lowest MIC measured in the cohort.

2020 ◽  
Vol 64 (11) ◽  
Author(s):  
Maxwell T. Chirehwa ◽  
Richard Court ◽  
Mariana de Kock ◽  
Lubbe Wiesner ◽  
Nihal de Vries ◽  
...  

ABSTRACT Cycloserine is a WHO group B drug for the treatment of multidrug-resistant tuberculosis (TB). Pharmacokinetic/pharmacodynamic data for cycloserine when dosed as terizidone are sparse. The aim of this analysis was to describe the population pharmacokinetics of cycloserine when administered as terizidone and predict the doses of terizidone attaining cycloserine exposures associated with efficacy. The plasma cycloserine level was measured 2 to 6 weeks after treatment initiation in patients hospitalized for second-line tuberculosis treatment. The pretreatment MICs of cycloserine were determined for the clinical isolates. We enrolled 132 participants with rifampicin-resistant TB; 79 were HIV positive. The median pretreatment MIC was 16 mg/liter. A one-compartment disposition model with two clearance pathways, nonrenal (0.35 liters/h) and renal (0.43 liters/h), described cycloserine pharmacokinetics well. Nonrenal clearance and the volume of distribution were allometrically scaled using fat-free mass. Smoking increased nonrenal clearance by 41%. Simulations showed that with daily doses of terizidone (750 mg and 1,000 mg for patients weighing ≤45 kg and >45 kg, respectively), the probability of maintaining the plasma cycloserine concentration above the MIC for more than 30% of the dosing interval (30% T>MIC) (which is associated with a 1.0-log10-CFU/ml kill in vitro) exceeded 90% at MIC values of ≤16 mg/liter, but the proportion of patients achieving 100% T>MIC (which is associated with the prevention of resistance) was more than 90% only at MICs of ≤8 mg/liter. Based on a target derived in vitro, the WHO-recommended doses of terizidone are effective for cycloserine MICs of ≤8 mg/liter, and higher doses are required to prevent the development of resistance.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Hanbin Li ◽  
David H. Salinger ◽  
Daniel Everitt ◽  
Mengchun Li ◽  
Angelo Del Parigi ◽  
...  

ABSTRACT Concentration-QTc modeling was applied to pretomanid, a new nitroimidazooxazine antituberculosis drug. Data came from eight phase 2 and phase 3 studies. Besides pretomanid alone, various combinations with bedaquiline, linezolid, moxifloxacin, and pyrazinamide were considered; special attention was given to the bedaquiline-pretomanid-linezolid (BPaL) regimen that has demonstrated efficacy in the Nix-TB study in subjects with extensively drug-resistant or treatment-intolerant or nonresponsive multidrug-resistant tuberculosis. Three heart rate corrections to QT were considered: Fridericia’s QTcF, Bazett’s QTcB, and a population-specific correction, QTcN. QTc increased with the plasma concentrations of pretomanid, bedaquiline’s M2 metabolite, and moxifloxacin in a manner described by a linear model in which the three slope coefficients were constant across studies, visits within study, and times postdose within visit but where the intercept varied across those dimensions. The intercepts tended to increase on treatment to a plateau after several weeks, a pattern termed the secular trend. The slope terms were similar for the three QTc corrections, but the secular trends differed, suggesting that at least some of the secular trend was due to the elevated heart rates of tuberculosis patients decreasing to normal levels on treatment. For pretomanid 200 mg once a day (QD) alone, a typical steady-state maximum concentration of drug in plasma (Cmax) resulted in a mean change from baseline of QTcN of 9.1 ms, with an upper 90% confidence interval (CI) limit of 10.2 ms. For the BPaL regimen, due to the additional impact of the bedaquiline M2 metabolite, the corresponding values were 13.6 ms and 15.0 ms. The contribution to these values from the secular trend was 4.0 ms.


2021 ◽  
Author(s):  
Yoohyun Hwang ◽  
Jiyeon Kim ◽  
Seungkyu Park ◽  
Sungweon Ryoo

Abstract Since 2013, Masan National Tuberculosis Hospital has collected standardized specimens from its tuberculosis patients, which include a large number of multidrug-resistant strains. The repository collects matched participants and their bacilli samples, compiling sequential samples from the beginning of treatment. The repository aims to provide resources for in-depth international research.


2012 ◽  
Vol 102 (6) ◽  
pp. 363 ◽  
Author(s):  
Tashneem Harris ◽  
Soraya Bardien ◽  
H Simon Schaaf ◽  
Lucretia Petersen ◽  
Greetje De Jong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document